Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Formal Total Synthesis of Aliskiren
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
2015 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 19, 7292-7296 p.Article in journal (Refereed) Published
Abstract [en]

The efficient and selective formal total synthesis of aliskiren is described. Aliskiren, a renin inhibitor drug, has received considerable attention, primarily because it is the first of the renin inhibitor drugs to be approved by the FDA. Herein, the formal synthesis of aliskiren by iridium-catalyzed asymmetric hydrogenation of two allylic alcohol fragments is reported. Screening a number of N,P-ligated iridium catalysts yielded two catalysts that gave the highest enantioselectivity in the hydrogenation, which gave the saturated alcohols in 97 and 93% ee. In only four steps after hydrogenation, the fragments were combined by using the Julia-Kocienski reaction to produce late-stage intermediate in an overall yield of 18%.

Place, publisher, year, edition, pages
2015. Vol. 21, no 19, 7292-7296 p.
Keyword [en]
asymmetric synthesis, hydrogenation, iridium, olefination, total synthesis
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-117427DOI: 10.1002/chem.201406523ISI: 000353348100041PubMedID: 25783891OAI: oai:DiVA.org:su-117427DiVA: diva2:813477
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationSwedish Energy AgencyVINNOVAStiftelsen Olle Engkvist Byggmästare
Note

AuthorCount:4;

Available from: 2015-05-22 Created: 2015-05-19 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Iridium Catalysed Asymmetric Hydrogenation of Olefins and Isomerisation of Allylic Alcohols
Open this publication in new window or tab >>Iridium Catalysed Asymmetric Hydrogenation of Olefins and Isomerisation of Allylic Alcohols
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work described in this thesis is focused on exploring the efficacy of asymmetric iridium catalysis in the hydrogenation of challenging substrates, including precursors to chiral sulfones and chiral cyclohexanes. Furthermore, iridium catalysis was used to isomerise allylic alcohols to aldehydes, and in a formal total synthesis of Aliskiren (a renin inhibitor). A large variety of unsaturated sulfones (cyclic, acyclic, vinylic, allylic and homoallylic) were prepared and screened in the iridium catalysed hydrogenation reaction using a series of previously developed N,P-ligated Ir-catalysts. The outcome was a highly enantioselective (>90% ee) protocol to prepare sulfones bearing chiral carbon scaffolds, sometimes having purely aliphatic substituents at the stereogenic centre. Furthermore, performing the Ramberg-Bäcklund reaction on the chiral products, under optimised conditions, produced cyclic and acyclic unsaturated derivatives without erosion of enantiomeric excess. This hydrogenation protocol was also successful in the hydrogenation of a number of cyclohexene-containing compounds. Minimally functionalised, functionalised and heterocycle-containing cyclohexenes were hydrogenated in up to 99% ee. Hitherto, both chiral sulfones and chiral cyclohexanes have been challenging targets for most catalytic asymmetric methodologies. Although the preparation of aldehydes and ketones by isomerisation of the corresponding allylic alcohol is well established, there has been limited success in the development of good enantioselective protocols. For the isomerisation of a number γ,γ-allylic alcohols to the corresponding chiral aldehydes, high enantioselectivities (up to >99% ee) and modest yields were achieved using an N,P-iridium catalyst. Noteworthy is the high selectivity obtained for isomerisation of and dialkyl γ,γ-allylic alcohols, which prior to this study had been difficult to isomerise in high enantioselectivity. Preparation of a key intermediate used in the synthesis of Aliskiren, a renin inhibitor drug was also accomplished. Using a convergent synthesis strategy, two allylic alcohol fragments were hydrogenated with high enantiomeric excess (>92% ee). These fragments were then joined using a Julia-Kocienski reaction, providing >95% geometry around the C=C bond, which was crucial for the subsequent steps in the synthesis.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2015. 53 p.
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-122419 (URN)978-91-76492-79-6 (ISBN)
Public defence
2015-12-18, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Manuscript.

Available from: 2015-11-26 Created: 2015-10-30 Last updated: 2015-11-25Bibliographically approved
2. Iridium Catalysed Asymmetric Hydrogenation of Olefins and Dynamic Kinetic Resolution in the Asymmetric Hydrogenation of Allylic Alcohols
Open this publication in new window or tab >>Iridium Catalysed Asymmetric Hydrogenation of Olefins and Dynamic Kinetic Resolution in the Asymmetric Hydrogenation of Allylic Alcohols
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work described in this thesis is focused on exploring the efficacy of iridium-catalysed asymmetric hydrogenation of precursors to chiral alcohols and chiral cyclohexanes. A range of allylic alcohols including γ,γ-dialkyl allylic alcohols and (Z)-allylic alcohols were prepared and evaluated in the asymmetric hydrogenation using iridium catalysts resulting in chiral alcohols in high yields and excellent enantioselectivity. This methodology was applied in the formal synthesis of Aliskiren, an efficient renin inhibitor drug, using the asymmetric hydrogenation of an allylic alcohol as a key-step. Another project concerned the dynamic kinetic resolution of racemic secondary allylic alcohols using Ir-N,P catalysts under hydrogenation conditions. A range of secondary allylic alcohols and protected alcohols were evaluated in the asymmetric hydrogenation via dynamic kinetic resolution using Ir-N,P catalysts. The corresponding chiral saturated alcohols were formed in good yield with excellent diastereoselectivites (up to 95/5) and enantioselectivities (>99% ee). The last part of this thesis is directed towards the development of highly regio- and enantioselective asymmetric hydrogenation of 1,4-cyclohexadienes and its application in the preparation of useful chiral cyclohexenone intermediates. Non-functionalised, functionalised and heterocycle-containing cyclohexadienes were evaluated. Good yield of regioselectively mono-hydrogenated silyl protected enol ethers were obtained in most cases with excellent enantioselectivity. 

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2017. 52 p.
Keyword
Iridium catalyst, asymmetric hydrogenation, dynamic kinetic resolution, allylic alcohol
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-140923 (URN)978-91-7649-744-9 (ISBN)978-91-7649-745-6 (ISBN)
Public defence
2017-05-02, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius Väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 5: Manuscript.

Available from: 2017-04-07 Created: 2017-03-23 Last updated: 2017-04-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Peters, Byron K.Liu, JianguoMargarita, CristianaAndersson, Pher G.
By organisation
Department of Organic Chemistry
In the same journal
Chemistry - A European Journal
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 171 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf