Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CCN activation of fumed silica aerosols mixed with soluble pollutants
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
2015 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 15, no 7, 3815-3829 p.Article in journal (Refereed) Published
Abstract [en]

Particle-water interactions of completely soluble or insoluble particles are fairly well understood but less is known of aerosols consisting of mixtures of soluble and insoluble components. In this study, laboratory measurements were performed to investigate cloud condensation nuclei (CCN) activity of silica particles mixed with ammonium sulfate (a salt), sucrose (a sugar) and bovine serum albumin known as BSA (a protein). The agglomerated structure of the silica particles was investigated using measurements with a differential mobility analyser (DMA) and an aerosol particle mass analyser (APM). Based on these data, the particles were assumed to be compact agglomerates when studying their CCN activation capabilities. Furthermore, the critical super-saturations of particles consisting of pure and mixed soluble and insoluble compounds were explored using existing theoretical frameworks. These results showed that the CCN activation of single-component particles was in good agreement with Kohler- and adsorption theory based models when the agglomerated structure was accounted for. For mixed particles the CCN activation was governed by the soluble components, and the soluble fraction varied considerably with particle size for our wet-generated aerosols. Our results confirm the hypothesis that knowing the soluble fraction is the key parameter needed for describing the CCN activation of mixed aerosols, and highlight the importance of controlled coating techniques for acquiring a detailed understanding of the CCN activation of atmospheric insoluble particles mixed with soluble pollutants.

Place, publisher, year, edition, pages
2015. Vol. 15, no 7, 3815-3829 p.
National Category
Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:su:diva-117400DOI: 10.5194/acp-15-3815-2015ISI: 000352957400012OAI: oai:DiVA.org:su-117400DiVA: diva2:815257
Note

AuthorCount:8;

Available from: 2015-05-29 Created: 2015-05-19 Last updated: 2017-12-06Bibliographically approved
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dalirian, MaryamAhlm, LarsRiipinen, Ilona
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf