Change search
ReferencesLink to record
Permanent link

Direct link
The interplay of disc wind and dynamical ejecta in the aftermath of neutron star-black hole mergers
Show others and affiliations
Number of Authors: 5
2015 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 449, no 1, 390-402 p.Article in journal (Refereed) Published
Abstract [en]

We explore the evolution of the different ejecta components generated during the merger of a neutron star and a black hole. Our focus is the interplay between material ejected dynamically during the merger, and the wind launched on a viscous time-scale by the remnant accretion disc. These components are expected to contribute to an electromagnetic transient and to produce r-process elements, each with a different signature when considered separately. Here we introduce a two-step approach to investigate their combined evolution, using two-and three-dimensional hydrodynamic simulations. Starting from the output of a merger simulation, we identify each component in the initial condition based on its phase-space distribution, and evolve the accretion disc in axisymmetry. The wind blown from this disc is injected into a three-dimensional computational domain where the dynamical ejecta is evolved. We find that the wind can suppress fallback accretion on time-scales longer than similar to 100 ms. Because of self-similar viscous evolution, the disc accretion at late times nevertheless approaches a power-law time dependence alpha t(-2.2). This can power some late-time gamma-ray burst engine activity, although the available energy is significantly less than in traditional fallback models. Inclusion of radioactive heating due to the r-process does not significantly affect the fallback accretion rate or the disc wind. We do not find any significant modification to the wind properties at large radius due to interaction with the dynamical ejecta. This is a consequence of the different expansion velocities of the two components.

Place, publisher, year, edition, pages
2015. Vol. 449, no 1, 390-402 p.
Keyword [en]
accretion, accretion discs, dense matter, gravitational waves, hydrodynamics, neutrinos, nuclear reactions, nucleosynthesis, abundances
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-119090DOI: 10.1093/mnras/stv238ISI: 000355345600028OAI: diva2:843216
Available from: 2015-07-27 Created: 2015-07-27 Last updated: 2015-07-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rosswog, Stephan
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Monthly notices of the Royal Astronomical Society
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link