Change search
ReferencesLink to record
Permanent link

Direct link
Potential source regions and processes of aerosol in the summer Arctic
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Number of Authors: 3
2015 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 15, no 11, 6487-6502 p.Article in journal (Refereed) Published
Abstract [en]

Sub-micrometer particle size distributions measured during four summer cruises of the Swedish icebreaker Oden 1991, 1996, 2001, and 2008 were combined with dimethyl sulfide gas data, back trajectories, and daily maps of pack ice cover in order to investigate source areas and aerosol formation processes of the boundary layer aerosol in the central Arctic. With a clustering algorithm, potential aerosol source areas were explored. Clustering of particle size distributions together with back trajectories delineated five potential source regions and three different aerosol types that covered most of the Arctic Basin: marine, newly formed and aged particles over the pack ice. Most of the pack ice area with <15% of open water under the trajectories exhibited the aged aerosol type with only one major mode around 40 nm. For newly formed particles to occur, two conditions had to be fulfilled over the pack ice: the air had spent 10 days while traveling over ever more contiguous ice and had traveled over less than 30% open water during the last 5 days. Additionally, the air had experienced more open water (at least twice as much as in the cases of aged aerosol) during the last 4 days before arrival in heavy ice conditions at Oden. Thus we hypothesize that these two conditions were essential factors for the formation of ultrafine particles over the central Arctic pack ice. In a comparison the Oden data with summer size distribution data from Alert, Nunavut, and Mt. Zeppelin, Spitsbergen, we confirmed the Oden findings with respect to particle sources over the central Arctic. Future more frequent broken-ice or open water patches in summer will spur biological activity in surface water promoting the formation of biological particles. Thereby low clouds and fogs and subsequently the surface energy balance and ice melt may be affected.

Place, publisher, year, edition, pages
2015. Vol. 15, no 11, 6487-6502 p.
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-119024DOI: 10.5194/acp-15-6487-2015ISI: 000356180900031OAI: diva2:843253
Available from: 2015-07-28 Created: 2015-07-24 Last updated: 2015-07-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Leck, CarolineTunved, Peter
By organisation
Department of Meteorology Department of Applied Environmental Science (ITM)
In the same journal
Atmospheric Chemistry And Physics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 61 hits
ReferencesLink to record
Permanent link

Direct link