Change search
ReferencesLink to record
Permanent link

Direct link
Particulate emissions from residential wood combustion in Europe revised estimates and an evaluation
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM). Environment and Health Administration, Stockholm, Sweden.
Show others and affiliations
Number of Authors: 7
2015 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 15, no 11, 6503-6519 p.Article in journal (Refereed) Published
Abstract [en]

Currently residential wood combustion (RWC) is increasing in Europe because of rising fossil fuel prices but also due to climate change mitigation policies. However, especially in small-scale applications, RWC may cause high emissions of particulate matter (PM). Recently we have developed a new high-resolution (7 x 7 km) anthropogenic carbonaceous aerosol emission inventory for Europe. The inventory indicated that about half of the total PM2.5 emission in Europe is carbonaceous aerosol and identified RWC as the largest organic aerosol source in Europe. The inventory was partly based on national reported PM emissions. Use of this organic aerosol inventory as input for two chemical transport models (CTMs), PMCAMx and EMEP MSC-W, revealed major underestimations of organic aerosol in winter time, especially for regions dominated by RWC. Interestingly, this was not universal but appeared to differ by country. In the present study we constructed a revised bottom-up emission inventory for RWC accounting for the semivolatile components of the emissions. The revised RWC emissions are higher than those in the previous inventory by a factor of 2-3 but with substantial inter-country variation. The new emission inventory served as input for the CTMs and a substantially improved agreement between measured and predicted organic aerosol was found. The revised RWC inven-tory improves the model-calculated organic aerosol significantly. Comparisons to Scandinavian source apportionment studies also indicate substantial improvements in the modelled wood-burning component of organic aerosol. This suggests that primary organic aerosol emission inventories need to be revised to include the semivolatile organic aerosol that is formed almost instantaneously due to dilution and cooling of the flue gas or exhaust. Since RWC is a key source of fine PM in Europe, a major revision of the emission estimates as proposed here is likely to influence source-receptor matrices and modelled source apportionment. Since usage of biofuels in small combustion units is a globally significant source, the findings presented here are also relevant for regions outside of Europe.

Place, publisher, year, edition, pages
2015. Vol. 15, no 11, 6503-6519 p.
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-119025DOI: 10.5194/acp-15-6503-2015ISI: 000356180900032OAI: diva2:843256
Available from: 2015-07-28 Created: 2015-07-24 Last updated: 2015-07-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Johansson, Christer
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Atmospheric Chemistry And Physics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link