Change search
ReferencesLink to record
Permanent link

Direct link
Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Carnegie Mellon University, USA.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Number of Authors: 3
2015 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 15, no 11, 6305-6322 p.Article in journal (Refereed) Published
Abstract [en]

We present a theoretical study investigating the cloud activation of multicomponent organic particles. We modeled these complex mixtures using solubility distributions (analogous to volatility distributions in the VBS, i.e., volatility basis set, approach), describing the mixture as a set of surrogate compounds with varying water solubilities in a given range. We conducted Khler theory calculations for 144 different mixtures with varying solubility range, number of components, assumption about the organic mixture thermodynamics and the shape of the solubility distribution, yielding approximately 6000 unique cloud condensation nucleus (CCN)-activation points. The results from these comprehensive calculations were compared to three simplifying assumptions about organic aerosol solubility: (1) complete dissolution at the point of activation; (2) combining the aerosol solubility with the molar mass and density into a single effective hygroscopicity parameter kappa; and (3) assuming a fixed water-soluble fraction eff. The complete dissolution was able to reproduce the activation points with a reasonable accuracy only when the majority (70-80 %) of the material was dissolved at the point of activation. The single-parameter representations of complex mixture solubility were confirmed to be powerful semi-empirical tools for representing the CCN activation of organic aerosol, predicting the activation diameter within 10% in most of the studied supersaturations. Depending mostly on the condensedphase interactions between the organic molecules, material with solubilities larger than about 0.1-100 g L-1 could be treated as soluble in the CCN activation process over atmospherically relevant particle dry diameters and supersaturations. Our results indicate that understanding the details of the solubility distribution in the range of 0.1-100 g L-1 is thus critical for capturing the CCN activation, while resolution outside this solubility range will probably not add much information except in some special cases. The connections of these results to the previous observations of the CCN activation and the molecular properties of complex organic mixture aerosols are discussed. The presented results help unravel the mechanistic reasons behind observations of hygroscopic growth and CCN activation of atmospheric secondary organic aerosol (SOA) particles. The proposed solubility distribution framework is a promising tool for modeling the interlinkages between atmospheric aging, volatility and water uptake of atmospheric organic aerosol.

Place, publisher, year, edition, pages
2015. Vol. 15, no 11, 6305-6322 p.
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-119022DOI: 10.5194/acp-15-6305-2015ISI: 000356180900019OAI: diva2:843259
Available from: 2015-07-28 Created: 2015-07-24 Last updated: 2015-07-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Riipinen, IlonaRastak, Narges
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Atmospheric Chemistry And Physics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 26 hits
ReferencesLink to record
Permanent link

Direct link