Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Expression change in Angiopoietin-1 underlies change in relative brain size in fish
Stockholm University, Faculty of Science, Department of Zoology, Ethology. Uppsala University, Sweden.
Stockholm University, Faculty of Science, Department of Zoology, Ethology. Uppsala University, Sweden.
Show others and affiliations
Number of Authors: 6
2015 (English)In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 282, no 1810, 20150872Article in journal (Refereed) Published
Abstract [en]

Brain size varies substantially across the animal kingdom and is often associated with cognitive ability; however, the genetic architecture underpinning natural variation in these key traits is virtually unknown. In order to identify the genetic architecture and loci underlying variation in brain size, we analysed both coding sequence and expression for all the loci expressed in the telencephalon in replicate populations of guppies (Poecilia reticulata) artificially selected for large and small relative brain size. A single gene, Angiopoietin-1 (Ang-1), a regulator of angiogenesis and suspected driver of neural development, was differentially expressed between large-and small-brain populations. Zebra fish (Danio rerio) morphants showed that mild knock down of Ang-1 produces a small-brained phenotype that could be rescued with Ang-1 mRNA. Translation inhibition of Ang-1 resulted in smaller brains in larvae and increased expression of Notch-1, which regulates differentiation of neural stem cells. In situ analysis of newborn large-and small-brained guppies revealed matching expression patterns of Ang-1 and Notch-1 to those observed in zebrafish larvae. Taken together, our results suggest that the genetic architecture affecting brain size in our population may be surprisingly simple, and Ang-1 may be a potentially important locus in the evolution of vertebrate brain size and cognitive ability.

Place, publisher, year, edition, pages
2015. Vol. 282, no 1810, 20150872
Keyword [en]
brain size, artificial selection, neuro-transcriptome, gene expression, knock down
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-119295DOI: 10.1098/rspb.2015.0872ISI: 000357719500028OAI: oai:DiVA.org:su-119295DiVA: diva2:844209
Available from: 2015-08-04 Created: 2015-08-03 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kotrschal, AlexanderKolm, Niclas
By organisation
Ethology
In the same journal
Proceedings of the Royal Society of London. Biological Sciences
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf