Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 9
2015 (English)In: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 10, no 6, 064004Article in journal (Refereed) Published
Abstract [en]

Black carbon (BC) aerosols impact climate and air quality. Since BC from fossil versus biomass combustion have different optical properties and different abilities to penetrate the lungs, it is important to better understand their relative contributions in strongly affected regions such as South Asia. This study reports the first year-round C-14-based source apportionment of elemental carbon (EC), the mass-based correspondent to BC, using as regional receptor sites the international Maldives Climate Observatory in Hanimaadhoo (MCOH) and the mountaintop observatory of the Indian Institute of Tropical Meteorology in Sinhagad, India (SINH). For the highly-polluted winter season (December-March), the fractional contribution to EC from biomass burning (f(bio)) was 53 +/- 5% (n = 6) atMCOHand 56 +/- 3% at SINH (n = 5). The f(bio) for the non-winter remainder was 53 +/- 11% (n = 6) atMCOHand 48 +/- 8%(n = 7) at SINH. This observation-based constraint on near-equal contributions from biomass burning and fossil fuel combustion at both sites compare with predictions from eight technology-based emission inventory (EI) models for India of (f(bio)) EI spanning 55-88%, suggesting that most current EI for Indian BC systematically under predict the relative contribution of fossil fuel combustion. Acontinued iterative testing of bottom-up EI with top-down observational source constraints has the potential to lead to reduced uncertainties regarding EC sources and emissions to the benefit of both models of climate and air quality as well as guide efficient policies to mitigate emissions.

Place, publisher, year, edition, pages
2015. Vol. 10, no 6, 064004
Keyword [en]
black carbon, organic carbon, isotope, India, Maldives, C-14, air pollution
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-119250DOI: 10.1088/1748-9326/10/6/064004ISI: 000356835600006OAI: oai:DiVA.org:su-119250DiVA: diva2:845984
Available from: 2015-08-13 Created: 2015-08-03 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson, AugustKruså, MartinGustafsson, Örjan
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Research Letters
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf