Change search
ReferencesLink to record
Permanent link

Direct link
Thermodynamics of Membrane Insertion and Refolding of the Diphtheria Toxin T-Domain
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
Number of Authors: 10
2015 (English)In: Journal of Membrane Biology, ISSN 0022-2631, E-ISSN 1432-1424, Vol. 248, no 3, 383-394 p.Article in journal (Refereed) Published
Abstract [en]

The diphtheria toxin translocation (T) domain inserts into the endosomal membrane in response to the endosomal acidification and enables the delivery of the catalytic domain into the cell. The insertion pathway consists of a series of conformational changes that occur in solution and in the membrane and leads to the conversion of a water-soluble state into a transmembrane state. In this work, we utilize various biophysical techniques to characterize the insertion pathway from the thermodynamic perspective. Thermal and chemical unfolding measured by differential scanning calorimetry, circular dichroism, and tryptophan fluorescence reveal that the free energy of unfolding of the T-domain at neutral and mildly acidic pH differ by 3-5 kcal/mol, depending on the experimental conditions. Fluorescence correlation spectroscopy measurements show that the free energy change from the membrane-competent state to the interfacial state is approximately -8 kcal/mol and is pH-independent, while that from the membrane-competent state to the transmembrane state ranges between -9.5 and -12 kcal/mol, depending on the membrane lipid composition and pH. Finally, the thermodynamics of transmembrane insertion of individual helices was tested using an in vitro assay that measures the translocon-assisted integration of test sequences into the microsomal membrane. These experiments suggest that even the most hydrophobic helix TH8 has only a small favorable free energy of insertion. The free energy for the insertion of the consensus insertion unit TH8-TH9 is slightly more favorable, yet less favorable than that measured for the entire protein, suggesting a cooperative effect for the membrane insertion of the helices of the T-domain.

Place, publisher, year, edition, pages
2015. Vol. 248, no 3, 383-394 p.
Keyword [en]
Bacterial toxins, Membrane protein folding, pH-triggered insertion, Free energy, Conformational switching
National Category
Biochemistry and Molecular Biology Physiology
URN: urn:nbn:se:su:diva-119251DOI: 10.1007/s00232-014-9734-0ISI: 000357047500003OAI: diva2:846114
Available from: 2015-08-14 Created: 2015-08-03 Last updated: 2015-08-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Öjemalm, KarinNilsson, IngMarievon Heijne, Gunnar
By organisation
Department of Biochemistry and Biophysics
In the same journal
Journal of Membrane Biology
Biochemistry and Molecular BiologyPhysiology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 57 hits
ReferencesLink to record
Permanent link

Direct link