Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Native and oxygenated polycyclic aromatic hydrocarbons in ambient air particulate matter from the city of Sulaimaniyah in Iraq
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 5
2015 (English)In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 116, 44-50 p.Article in journal (Refereed) Published
Abstract [en]

The concentrations of 43 polycyclic aromatic hydrocarbons (PAHs) and 4 oxygenated PAHs (OPAHs) are reported for the first time in particulate matter (PM10) sampled in the air of the city of Sulaimaniyah in Iraq. The total PAH concentration at the different sampling sites varied between 9.3 and 114 ng/m(3). The corresponding values of the human carcinogen benzotalpyrene were between 0.3 and 6.9 ng/m(3), with most samples exceeding the EU annual target value of 1 ng/m(3). The highly carcinogenic dibenzopyrene isomers dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene and dibenzo[a,h]pyrene constituted 0.1-0.4% of the total PAH concentration. However, when scaling for relative cancer potencies using toxic equivalency factors, a benzo[a]pyrene equivalent concentration of dibenzo[a,l]pyrene equal to that of benzo[a]pyrene was obtained, indicating that the contribution of dibenzo[a,l]pyrene to the carcinogenicity of the PAHs could be similar to that of benzo[a]pyrene. A high correlation between the determined concentrations of the dibenzopyrene isomers and benzo[a]pyrene was found, which supported the use of benzo[a]pyrene as an indicator for the carcinogenicity of PAHs in ambient air. The total concentrations of the four OPAHs, 9,10-anthraquinone, 4H-cyclopenta[def]phenanthren-4-one, benzanthrone, and 7,12-benz[a]anthraquinone, varied between 0.6 and 8.1 ng/m(3), with 9,10-anthraquinone being the most abundant OPAH in all of the samples.

Place, publisher, year, edition, pages
2015. Vol. 116, 44-50 p.
Keyword [en]
Ambient air, Particulates, Oxygenated polycyclic aromatic hydrocarbons, Polycyclic aromatic hydrocarbons, Benzo[a]pyrene, Dibenzopyrenes, Anthraquinone
National Category
Earth and Related Environmental Sciences Chemical Sciences
Research subject
Analytical Chemistry
Identifiers
URN: urn:nbn:se:su:diva-120178DOI: 10.1016/j.atmosenv.2015.06.020ISI: 000358469300005OAI: oai:DiVA.org:su-120178DiVA: diva2:851587
Available from: 2015-09-07 Created: 2015-09-02 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Determination of OPAHs and PAHs in Particulate Matter from Ambient Air and Engine Emissions: Multidimensional Chromatography
Open this publication in new window or tab >>Determination of OPAHs and PAHs in Particulate Matter from Ambient Air and Engine Emissions: Multidimensional Chromatography
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Particulate matter (PM) is an air pollutant that seriously impacts human health. Epidemiological studies have shown associations between human exposure to urban air PM and lung cancer, respiratory and cardiovascular diseases. Polycyclic aromatic hydrocarbons (PAHs) and oxygenated polycyclic aromatic hydrocarbons (OPAHs) are two groups of compounds associated with PM in ambient air. These compounds are generated from the incomplete combustion of organic material of both natural and anthropogenic origin. PAHs are thought to play an important role in the adverse health outcomes from exposure to PM in air. OPAHs contain one or more carbonyl groups and could be more toxic to humans compared to their corresponding parent PAH. Measurement of these compounds at trace levels in complex matrices requires analytical methods with high selectivity and precision and low quantification limits.

This thesis describes the development and application of analytical methods for the determination of PAHs and OPAHs in ambient air and engine exhaust PM. Extraction was performed using pressurized liquid extraction, and two different setups for liquid chromatography–gas chromatography (LC-GC) were employed for automated sample clean-up, separation and detection. The developed methods were validated using standard reference materials issued by the National Institute of Standards and Technology. The first methodology developed used off-line solid-phase extraction and on-line LC-GC/mass spectrometry (LC-GC/MS). This method provided low limits of quantification and high selectivity and was successfully applied to the determination of OPAHs and PAHs in PM from the urban atmosphere of Sulaymaniyah city in the Kurdistan region of Iraq. The concentration of benzo[a]pyrene in Sulaymaniyah city was three times higher than the legislated EU target value (1 ng/m3). Furthermore the analytical method was applied on exhaust PM of vehicles fuelled with various gasoline/ethanol blends. The emissions factors for PAHs and OPAHs were highest when using70% ethanol/gasoline blends at -7 °C.

The second method developed provided fully automated clean-up, separation and detection of PAHs in PM extracts using a multidimensional 2D-LC/2D-GC system. Polar, mono/di-aromatic and alkane compounds were successively removed by the two-dimensional LC part of the system. Heart-cutting segments from the first GC column (first dimension) to the second GC column (second dimension) increased the resolution of poorly separated or co-eluted PAHs. The results were in good agreement with the certified values from NIST (±25%).

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2015. 58 p.
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-122046 (URN)978-91-7649-242-0 (ISBN)
Public defence
2015-11-27, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.

Available from: 2015-11-05 Created: 2015-10-21 Last updated: 2015-10-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ahmed, Trifa M.Bergvall, ChristofferWesterholm, Roger
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Atmospheric Environment
Earth and Related Environmental SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 400 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf