Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical study of the mechanism of H2O+ dissociative recombination
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.
Number of Authors: 4
2015 (English)In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 92, no 1, 012708Article in journal (Refereed) Published
Abstract [en]

By combining electronic structure and scattering calculations, quasidiabatic potential energy surfaces of both bound Rydberg and electronic resonant states of the water molecule are calculated at the multireference configuration-interaction level. The scattering matrix calculated at low collision energy is used to obtain explicitly all couplings elements responsible for the electronic capture to bound Rydberg states. These are used to estimate the cross section arising from the indirect mechanism of dissociative recombination. Additionally, the role of the direct capture and dissociation through the resonant states is explored using wave-packet propagation along one-dimensional slices of the multidimensional potential energy surfaces.

Place, publisher, year, edition, pages
2015. Vol. 92, no 1, 012708
National Category
Physical Sciences
Research subject
Theoretical Physics
Identifiers
URN: urn:nbn:se:su:diva-120076DOI: 10.1103/PhysRevA.92.012708ISI: 000358839200004OAI: oai:DiVA.org:su-120076DiVA: diva2:851829
Available from: 2015-09-07 Created: 2015-09-01 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Theoretical studies of chemical dynamics on excited states, driven by non-adiabatic effects: Charge recombination reactions
Open this publication in new window or tab >>Theoretical studies of chemical dynamics on excited states, driven by non-adiabatic effects: Charge recombination reactions
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is based on theoretical studies of molecular collisions occurring at relatively low to intermediate collision energies. The collisions are called dissociative recombination (DR) and mutual neutralization (MN). In a molecular quantum mechanical picture, both reactions involve many highly excited molecular electronic states that are interacting by non-adiabatic couplings with each other. The molecular complexes involved in the collisions are relatively (diatomic or triatomic systems) composed of relative light atoms. This allows for accurate quantum chemistry calculations and a quantum mechanical description of the nuclear motions. The reactions studied here are the MN reaction in collisions of H++ H-, Li++ F-, and He++ H- and the DR reaction of H2O+. Rotational couplings are investigated in the study of MN reaction for  He++ H . For some reactions, the electronic resonant states have to be considered. These are not bound states, but are states interacting with the ionization continuum. Electronic structure calculations are combined with electron scattering calculations to accurately compute potential energy curves for the resonant states involved in the DR of H2O+ and the MN of  He++ H. From these calculations, the autoionization widths of the resonant states are also obtained. Once the potential energy curves are computed for the systems, the nuclear dynamics are studied either semi-classically, using the Landau-Zener method or quantum mechanically, employing the time-independent and time-dependant Schrödinger equations. Reaction cross section and final states distribution are computed for all the reactions, showing significantly large cross section at low to intermediate collision energies. For the MN processes, studied here, not only total cross sections are calculated but differential cross sections as well. Where possible, comparisons with previous experimental and theoretical results are performed

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2016. 88 p.
Keyword
Mutual neutralization, Dissociative recombination, electronic structure, non-adiabatic
National Category
Atom and Molecular Physics and Optics
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-128723 (URN)978-91-7649-409-7 (ISBN)
Public defence
2016-05-23, sal, FA32, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

Available from: 2016-04-30 Created: 2016-04-01 Last updated: 2017-02-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nkambule, Sifiso M.Larson, Åsa
By organisation
Department of Physics
In the same journal
Physical Review A. Atomic, Molecular, and Optical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 71 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf