Change search
ReferencesLink to record
Permanent link

Direct link
Dynamic interactions of ecohydrological and biogeochemical processes in water-limited systems
Stockholm University, Faculty of Science, Department of Physical Geography.
Show others and affiliations
Number of Authors: 5
2015 (English)In: Ecosphere, ISSN 2150-8925, Vol. 6, no 8, 133Article in journal (Refereed) Published
Abstract [en]

Water is the essential reactant, catalyst, or medium for many biogeochemical reactions, thus playing an important role in the activation and deactivation of biogeochemical processes. The coupling between hydrological and biogeochemical processes is particularly evident in water-limited arid and semi-arid environments, but also in areas with strong seasonal precipitation patterns (e.g., Mediterranean) or in mesic systems during droughts. Moreover, this coupling is apparent at all levels in the ecosystems-from soil microbial cells to whole plants to landscapes. Identifying and quantifying the biogeochemical hot spots'' and hot moments'', the underlying hydrological drivers, and how disturbance-induced vegetation transitions affect the hydrological-biogeochemical interactions are challenging because of the inherent complexity of these interactions, thus requiring interdisciplinary approaches. At the same time, a holistic approach is essential to fully understand function and processes in water-limited ecosystems and to predict their responses to environmental change. This article examines some of the mechanisms responsible for microbial and vegetation responses to moisture inputs in water-limited ecosystems through a synthesis of existing literature. We begin with the initial observation of Birch effect in 1950s and examine our current understanding of the interactions among vegetation dynamics, hydrology, and biochemistry over the past 60 years. We also summarize the modeling advances in addressing these interactions. This paper focuses on three opportunities to advance coupled hydrological and biogeochemical research: (1) improved quantitative understanding of mechanisms linking hydrological and biogeochemical variations in drylands, (2) experimental and theoretical approaches that describe linkages between hydrology and biogeochemistry (particularly across scales), and (3) the use of these tools and insights to address critical dryland issues of societal relevance.

Place, publisher, year, edition, pages
2015. Vol. 6, no 8, 133
Keyword [en]
climate change, drylands, ecohydrology, ESA Centennial Paper, evapotranspiration, hysteresis, isotope, modeling, stochastic
National Category
Biological Sciences
URN: urn:nbn:se:su:diva-120702DOI: 10.1890/ES15-00122.1ISI: 000359645200005OAI: diva2:854968
Available from: 2015-09-18 Created: 2015-09-15 Last updated: 2015-09-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Manzoni, Stefano
By organisation
Department of Physical Geography
In the same journal
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link