Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Apportioned contributions of PM2.5 fine aerosol particles over the Maldives (northern Indian Ocean) from local sources vs long-range transport
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 7
2015 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 536, 72-78 p.Article in journal (Refereed) Published
Abstract [en]

Urban-like plumes of gases and particulate matter originating from the South Asian region are frequently observed over the Indian Ocean, especially during the dry winter period. However, in addition to the strong sources on main-land South Asia, there are also local Maldivian emissions. The local contributions to the load of fine particulate matter (PM2.5) in the Maldivian capital Male was assessed using the well-established Maldives Climate Observatory at Hanimaadhoo (MCOH) to represent local background, recording the long-range transported component for a full-year synoptic campaign at both sites in 2013. The year-round levels in both Male and MCOH are strongly influenced by the seasonality of the monsoon cycle, including precipitation patterns and air-mass transport pathways, with lower levels during the wet summer season. The annual-average PM2.5 levels in Male are higher (avg. 19 mu g/m(3)) than at MCOH (avg. 13 mu g/m(3)) with the difference being the largest during the summer, when local emissions play a larger role. The 24-hWorld Health Organization (WHO) PM2.5 health guideline was surpassed for the week-long collections in 71% of the cases in Male and in 74% of the cases for Hanimaadhoo. This study shows that in the dry/winter season 90 +/- 11% of PM2.5 levels in Male could be from long-range transport with only 8 +/- 11% from local emissions while in the wet/monsoon season the relative contributions are about equal. The concentrations of organic carbon (OC) and elemental carbon (EC) showed similar seasonal patterns as bulk mass PM2.5. The relative contribution of total carbonaceous matter to bulk mass PM2.5 was 17% in Male and 13% at MCOH, suggesting larger contributions from incomplete combustion practices in the Male local region.

Place, publisher, year, edition, pages
2015. Vol. 536, 72-78 p.
Keyword [en]
Black carbon, Organic carbon, Elemental carbon, Air pollution, Air quality
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-121854DOI: 10.1016/j.scitotenv.2015.07.059ISI: 000361189800009PubMedID: 26196071OAI: oai:DiVA.org:su-121854DiVA: diva2:864238
Available from: 2015-10-26 Created: 2015-10-19 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Andersson, AugustKruså, MartinGustafsson, Örjan
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Science of the Total Environment
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf