Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Studies of adaptive response and mutation induction in MCF-10A cells following exposure to chronic or acute ionizing radiation
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Number of Authors: 4
2015 (English)In: Mutation research, ISSN 0027-5107, E-ISSN 1873-135X, Vol. 780, 55-59 p.Article in journal (Refereed) Published
Abstract [en]

A phenomenon in which exposure to a low adapting dose of radiation makes cells more resistant to the effects of a subsequent high dose exposure is termed radio-adaptive response. Adaptive response could hypothetically reduce the risk of late adverse effects of chronic or acute radiation exposures in humans. Understanding the underlying mechanisms of such responses is of relevance for radiation protection as well as for the clinical applications of radiation in medicine. However, due to the variability of responses depending on the model system and radiation condition, there is a need to further study under what conditions adaptive response can be induced. In this study, we analyzed if there is a dose rate dependence for the adapting dose, assuming that the adapting dose induces DNA response/repair pathways that are dose rate dependent. MCF-10A cells were exposed to a 50 mGy adapting dose administered acutely (0.40 Gy/min) or chronically (1.4 mGy/h or 4.1 mGy/h) and then irradiated by high acute challenging doses. The endpoints of study include clonogenic cell survival and mutation frequency at X-linked hprt locus. In another series of experiment, cells were exposed to 100 mGy and 1 Gy at different dose rates (acutely and chronically) and then the mutation frequencies were studied. Adaptive response was absent at the level of clonogenic survival. The mutation frequencies were significantly decreased in the cells pre-exposed to 50 mGy at 1.4 mGy/h followed by 1 Gy acute exposure as challenging dose. Importantly, at single dose exposures (1 Gy or 100 mGy), no differences at the level of mutation were found comparing different dose rates.

Place, publisher, year, edition, pages
2015. Vol. 780, 55-59 p.
Keyword [en]
Mutagenesis, Dose rate, Ionizing radiation, Mutation frequency, Adaptive response
National Category
Environmental Biotechnology Biological Sciences Basic Medicine
Identifiers
URN: urn:nbn:se:su:diva-122256DOI: 10.1016/j.mrfmmm.2015.07.008ISI: 000362306000006OAI: oai:DiVA.org:su-122256DiVA: diva2:866279
Available from: 2015-11-02 Created: 2015-10-28 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Shakeri Manesh, SaraSangsuwan, TraimateWojcik, AndrzejHaghdoost, Siamak
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Mutation research
Environmental BiotechnologyBiological SciencesBasic Medicine

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf