Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Isotope-Based Source Apportionment of EC Aerosol Particles during Winter High-Pollution Events at the Zeppelin Observatory, Svalbard
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 5
2015 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 49, no 19, 11959-11966 p.Article in journal (Refereed) Published
Abstract [en]

Black carbon (BC) aerosol particles contribute to climate warming of the Arctic, yet both the sources and the source-related effects are currently poorly constrained. Bottom-up emission inventory (El) approaches are challenged for BC in general and the Arctic in particular. For example, estimates from three different El models on the fractional contribution to BC from biomass burning (north of 60 degrees N) vary between 11% and 68%, each acknowledging large uncertainties. Here we present the first dual-carbon isotope-based (Delta C-14 and delta C-13) source apportionment of elemental carbon (EC), the mass-based correspondent to optically defined BC, in the Arctic atmosphere. It targeted 14 high-loading and high-pollution events during January through March of 2009 at the Zeppelin Observatory (79 degrees N; Svalbard, Norway), with these representing one-third of the total sampling period that was yet responsible for three-quarters of the total EC loading. The top-down source-diagnostic C-14 fingerprint constrained that 52 +/- 15% (n = 12) of the EC stemmed from biomass burning. Including also two samples with 95% and 98% biomass contribution yield 57 +/- 21% of EC from biomass burning. Significant variability in the stable carbon isotope signature indicated temporally shifting emissions between different fossil sources, likely including liquid fossil and gas flaring. Improved source constraints of Arctic BC both aids better understanding of effects and guides policy actions to mitigate emissions.

Place, publisher, year, edition, pages
2015. Vol. 49, no 19, 11959-11966 p.
National Category
Environmental Engineering Earth and Related Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
URN: urn:nbn:se:su:diva-122941DOI: 10.1021/acs.est.5b02644ISI: 000362629100081OAI: oai:DiVA.org:su-122941DiVA: diva2:870067
Available from: 2015-11-13 Created: 2015-11-11 Last updated: 2017-12-01Bibliographically approved
In thesis
1. Isotope-based source apportionment of black carbon aerosols in the Eurasian Arctic
Open this publication in new window or tab >>Isotope-based source apportionment of black carbon aerosols in the Eurasian Arctic
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Aerosols change the Earth's energy balance. Black carbon (BC) aerosols are a product of incomplete combustion of fossil fuels and biomass burning and cause a net warming through aerosol radiation interactions (ari) and aerosol cloud interactions (aci). BC aerosols have potentially strong implications on the Arctic climate, yet the net global climate effect of BC is very uncertain. Best estimates assume a net warming effect, roughly half to that of CO2. However, the time scales during which CO2 emissions affect the global climate are on the order of hundreds of years, while BC is a short-lived climate pollutant (SLCP) with atmospheric life times of days to weeks.

Climate models or atmospheric transport models struggle to emulate the seasonality and amplitude of BC concentrations in the Arctic, which are low in summer and high in winter/spring during the so called Arctic haze season. The high uncertainties regarding BC's climate impact are not only related to ari and aci, but also due to model parameterizations of BC lifetime and transport, and the highly uncertain estimates of global and regional BC emissions. Given the high uncertainties in technology-based emission inventories (EI), there is a need for an observation-based assessment of sources of BC in the atmosphere.

We study short-term and long-term observations of elemental carbon (EC), the mass-based analog of optically-defined BC. EC aerosol concentrations and carbon-isotope-based (δ13C and ∆14C) sources were constrained (top-down) for three Arctic receptor sites in Abisko (northern Sweden), Tiksi (East Siberian Russia), and Zeppelin (on Svalbard, Norway). The radiocarbon (∆14C) signature allows to draw conclusion on the EC sources (fossil fuels vs. biomass burning) with high accuracy (<5% variation). Stable carbon isotopic fingerprints (δ13C) give qualitative information of the consumed fuel type, i.e. coal, C3-plants (wood), liquid fossil fuels (diesel) or gas flaring (methane and non-methane hydrocarbons). These fingerprints can be used in conjunction with Bayesian statistics, to estimate quantitative source contributions of the sources. Finally, our observations were compared to predictions from a state of the art atmospheric transport model (coupled to BC emissions), conducted by our collaborators at NILU (Norwegian Institute for Air Research).

Observed BC concentrations showed a high seasonality throughout the year, with elevated concentrations in the winter, at all sites. The highest concentrations were measured on Svalbard during a short campaign (Jan-Mar 2009) focusing on BC pollution events. Long-term observations showed that Svalbard (2013) had overall the lowest annual BC concentrations, followed by Abisko (2012) and Tiksi (2013). Isotope constraints on BC combustion sources exhibited a high seasonality and big amplitude all across the Eurasian Arctic. Uniform seasonal trends were observed in all three year-round studies, showing fractions of biomass burning of 60-70% in summer and 10-40% in winter. Europe was the major source region (>80%) for BC emissions arriving at Abisko and the main sources were liquid fossil fuels and biomass burning (wood). The model agreed very well with the Abisko observations, showing good model skill and relatively well constrained sources in the European regions of the EI.

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2016. 47 p.
Keyword
Black Carbon, Radiocarbon, Air Pollution, Arctic Amplification, Climate Change, Arctic Haze, Atmospheric Transport Modeling, Emission Inventory, Carbon Isotopes
National Category
Meteorology and Atmospheric Sciences
Research subject
Applied Environmental Science
Identifiers
urn:nbn:se:su:diva-134577 (URN)978-91-7649-470-7 (ISBN)
Public defence
2016-12-02, De Geersalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.

Available from: 2016-11-09 Created: 2016-10-11 Last updated: 2017-01-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Winiger, PatrikAndersson, AugustTunved, PeterGustafsson, Örjan
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Science and Technology
Environmental EngineeringEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 150 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf