Change search
ReferencesLink to record
Permanent link

Direct link
Defining a Simplified Yet "Realistic" Equation of State for Seawater
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .
Number of Authors: 4
2015 (English)In: Journal of Physical Oceanography, ISSN 0022-3670, E-ISSN 1520-0485, Vol. 45, no 10, 2564-2579 p.Article in journal (Refereed) Published
Abstract [en]

There is a growing realization that the nonlinear nature of the equation of state has a deep impact on the global ocean circulation; however, the understanding of the global effects of these nonlinearities remains elusive. This is partly because of the complicated formulation of the seawater equation of state making it difficult to handle in theoretical studies. In this paper, a hierarchy of polynomial equations of state of increasing complexity, optimal in a least squares sense, is presented. These different simplified equations of state are then used to simulate the ocean circulation in a global 2 degrees-resolution configuration. Comparisons between simulated ocean circulations confirm that nonlinear effects are of major importance, in particular influencing the circulation through determination of the static stability below the mixed layer, thus controlling rates of exchange between the atmosphere and the ocean interior. It is found that a simple polynomial equation of state, with a quadratic term in temperature (for cabbeling), a temperature-pressure product term (for thermobaricity), and a linear term in salinity, that is, only four tuning parameters, is enough to simulate a reasonably realistic global circulation. The best simulation is obtained when the simplified equation of state is forced to have an accurate thermal expansion coefficient near the freezing point, highlighting the importance of polar regions for the global stratification. It is argued that this simplified equation of state will be of great value for theoretical studies and pedagogical purposes.

Place, publisher, year, edition, pages
2015. Vol. 45, no 10, 2564-2579 p.
Keyword [en]
Circulation, Dynamics, Deep convection, Large-scale motions, Ocean circulation, Models and modeling, General circulation models, Ocean models, Applications, Education
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-122755DOI: 10.1175/JPO-D-15-0080.1ISI: 000362415900007OAI: diva2:871711
Available from: 2015-11-16 Created: 2015-11-10 Last updated: 2015-11-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Roquet, FabienBrodeau, LaurentNycander, Jonas
By organisation
Department of Meteorology
In the same journal
Journal of Physical Oceanography
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 110 hits
ReferencesLink to record
Permanent link

Direct link