Change search
ReferencesLink to record
Permanent link

Direct link
An approach for manganese biomonitoring using a manganese carrier switch in serum from transferrin to citrate at slightly elevated manganese concentration
Show others and affiliations
Number of Authors: 8
2015 (English)In: Journal of Trace Elements in Medicine and Biology, ISSN 0946-672X, E-ISSN 1878-3252, Vol. 32, 145-154 p.Article in journal (Refereed) Published
Abstract [en]

After high-dose-short-term exposure (usually from occupational exposure) and even more under low-dose long term exposure (mainly environmental) manganese (Mn) biomonitoring is still problematic since these exposure scenarios are not necessarily reflected by a significant increase of total Mn in blood or serum. Usually, Mn concentrations of exposed and unexposed persons overlap and individual differentiation is often not possible. In this paper Mn speciation on a large sample size (n=180) was used in order to be able to differentiate between highly Mn-exposed or low or unexposed individuals at low total Mn concentration in serum (Mn(S)). The whole sample set consisted of three subsets from Munich, Emilia Romagna region in Italy and from Sweden. It turned out that also at low total Mn(S) concentrations a change in major Mn carriers in serum takes place from Mn-transferrin (Mn-Tf(S)) towards Mn-citrate (Mn-Cit(S)) with high statistical significance (p < 0.000002). This carrier switch from Mn-Tf(S) to Mn-Cit(S) was observed between Mn(S) concentrations of 1.5 mu g/L to ca. 1.7 mu g/L. Parallel to this carrier change, for sample donors from Munich where serum and cerebrospinal fluid were available, the concentration of Mn beyond neural barriers analysed as Mn in cerebrospinal fluid (Mn(C)) positively correlates to Mn-Cit(S) when Mn(S) concentration was above 1.7 mu g/L. The correlation between Mn-Cit(S) and Mn(C) reflects the facilitated Mn transport through neural barrier by means of Mn-citrate. Regional differences in switch points from Mn-Tf(S) to Mn-Cit(S) were observed for the three sample subsets. It is currently unknown whether these differences are due to differences in location, occupation, health status or other aspects. Based on our results, Mn-Cit(S) determination was considered as a potential means for estimating the Mn load in brain and CSF, i.e., it could be used as a biomarker for Mn beyond neural barrier. For a simpler Mn-Cit(S) determination than size exclusion chromatography inductively coupled plasma mass spectrometry (SEC-ICP-MS), ultrafiltration (UF) of serum samples was tested for suitability, the latter possibly being a preferred choice for routine occupational medicine laboratories. Our results revealed that UF could be an alternative if methodical prerequisites and limitations are carefully considered. These prerequisites were determined to be a thorough cleaning procedure at a minimum Mn(S) concentration >1.5 mu g/L, as at lower concentrations a wide scattering of the measured concentrations in comparison to the standardized SEC-ICP-MS results were observed.

Place, publisher, year, edition, pages
2015. Vol. 32, 145-154 p.
Keyword [en]
Manganese speciation, Size exclusion chromatography inductively coupled plasma mass spectrometry, Mn-citrate, Biomonitoring, Mn-carrier switch, Ultrafiltration
National Category
Biological Sciences Environmental Health and Occupational Health
Identifiers
URN: urn:nbn:se:su:diva-123210DOI: 10.1016/j.jtemb.2015.07.006ISI: 000362380200018OAI: oai:DiVA.org:su-123210DiVA: diva2:872212
Available from: 2015-11-18 Created: 2015-11-18 Last updated: 2015-11-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lidén, Göran
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Journal of Trace Elements in Medicine and Biology
Biological SciencesEnvironmental Health and Occupational Health

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 33 hits
ReferencesLink to record
Permanent link

Direct link