Change search
ReferencesLink to record
Permanent link

Direct link
Measurement of the correlation between flow harmonics of different order in lead-lead collisions at root S-NN=2.76 TeV with the ATLAS detector
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 2819
2015 (English)In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 92, no 3, 034903Article in journal (Refereed) Published
Abstract [en]

Correlations between the elliptic or triangular flow coefficients v(m) (m = 2 or 3) and other flow harmonics v(n) (n = 2 to 5) are measured using root S-NN = 2.76 TeV Pb + Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 mu b(-1). The v(m)-v(n) correlations aremeasured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v(3) is found to be anticorrelated with v(2) and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, epsilon(2) and epsilon(3). However, it is observed that v(4) increases strongly with v(2), and v(5) increases strongly with both v(2) and v(3). The trend and strength of the v(m) -v(n) correlations for n = 4 and 5 are found to disagree with epsilon(m)-epsilon(n) correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to v(n) and a nonlinear term that is a function of v(2)(2) or of v(2)v(3), as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v(4) and v(5) are found to be consistent with previously measured event-plane correlations.

Place, publisher, year, edition, pages
2015. Vol. 92, no 3, 034903
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-122332DOI: 10.1103/PhysRevC.92.034903ISI: 000361118900009OAI: oai:DiVA.org:su-122332DiVA: diva2:875256
Available from: 2015-12-01 Created: 2015-10-29 Last updated: 2015-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Abulaiti, YimingÅkerstedt, HenrikÅsman, BarbroBendtz, KatarinaBertoli, GabrieleBessidskaia Bylund, OlgaBohm, ChristianClement, ChristopheCribbs, Wayne A.Hellman, StenJon-And, KerstinKhandanyan, HovhannesKim, HeyonKlimek, PawelLundberg, OlofMilstead, David A.Moa, TorbjörnMolander, SimonPani, PriscillaPetridis, AndreasPlucinski, PawelRossetti, ValerioShcherbakova, AnnaSilverstein, Samuel B.Sjölin, JörgenStrandberg, SaraTylmad, MajaUghetto, Michaël
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physical Review C. Nuclear Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 339 hits
ReferencesLink to record
Permanent link

Direct link