Change search
ReferencesLink to record
Permanent link

Direct link
Predictive modeling of structured electronic health records for adverse drug event detection
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2015 (English)In: BMC Medical Informatics and Decision Making, ISSN 1472-6947, E-ISSN 1472-6947, Vol. 15, no SIArticle in journal (Refereed) PublishedText
Abstract [en]

Background: The digitization of healthcare data, resulting from the increasingly widespread adoption of electronic health records, has greatly facilitated its analysis by computational methods and thereby enabled large-scale secondary use thereof. This can be exploited to support public health activities such as pharmacovigilance, wherein the safety of drugs is monitored to inform regulatory decisions about sustained use. To that end, electronic health records have emerged as a potentially valuable data source, providing access to longitudinal observations of patient treatment and drug use. A nascent line of research concerns predictive modeling of healthcare data for the automatic detection of adverse drug events, which presents its own set of challenges: it is not yet clear how to represent the heterogeneous data types in a manner conducive to learning high-performing machine learning models. Methods: Datasets from an electronic health record database are used for learning predictive models with the purpose of detecting adverse drug events. The use and representation of two data types, as well as their combination, are studied: clinical codes, describing prescribed drugs and assigned diagnoses, and measurements. Feature selection is conducted on the various types of data to reduce dimensionality and sparsity, while allowing for an in-depth feature analysis of the usefulness of each data type and representation. Results: Within each data type, combining multiple representations yields better predictive performance compared to using any single representation. The use of clinical codes for adverse drug event detection significantly outperforms the use of measurements; however, there is no significant difference over datasets between using only clinical codes and their combination with measurements. For certain adverse drug events, the combination does, however, outperform using only clinical codes. Feature selection leads to increased predictive performance for both data types, in isolation and combined. Conclusions: We have demonstrated how machine learning can be applied to electronic health records for the purpose of detecting adverse drug events and proposed solutions to some of the challenges this presents, including how to represent the various data types. Overall, clinical codes are more useful than measurements and, in specific cases, it is beneficial to combine the two.

Place, publisher, year, edition, pages
2015. Vol. 15, no SI
Keyword [en]
pharmacovigilance, adverse drug events, electronic health records, machine learning, random forest, feature selection
National Category
Information Systems
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-123965DOI: 10.1186/1472-6947-15-S4-S1ISI: 000367480700001OAI: oai:DiVA.org:su-123965DiVA: diva2:878609
Available from: 2015-12-09 Created: 2015-12-09 Last updated: 2016-02-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhao, JingHenriksson, AronAsker, LarsBoström, Henrik
By organisation
Department of Computer and Systems Sciences
In the same journal
BMC Medical Informatics and Decision Making
Information Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link