Change search
ReferencesLink to record
Permanent link

Direct link
Temporal weighting of clinical events in electronic health records for pharmacovigilance
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2015 (English)In: IEEE International Conference on Bioinformatics and Biomedicine, IEEE Computer Society , 2015Conference paper (Refereed)Text
Abstract [en]

Electronic health records (EHRs) have recently been identified as a potentially valuable source for monitoring adverse drug events (ADEs). However, ADEs are heavily under- reported in EHRs. Using machine learning algorithms to automatically detect patients that should have had ADEs reported in their health records is an efficient and effective solution. One of the challenges to that end is how to take into account temporality when using clinical events, which are time stamped in EHRs, as features for machine learning algorithms to exploit. Previous research on this topic suggests that representing EHR data as a bag of temporally weighted clinical events is promising; however, how to assign weights in an optimal manner remains unexplored. In this study, nine different temporal weighting strategies are proposed and evaluated using data extracted from a Swedish EHR database, where the predictive performance of models constructed with the random forest learning algorithm is compared. Moreover, variable importance is analyzed to obtain a deeper understanding as to why a certain weighting strategy is favored over another, as well as which clinical events undergo the biggest changes in importance with the various weighting strategies. The results show that the choice of weighting strategy has a significant impact on the predictive performance for ADE detection, and that the best choice of weighting strategy depends on the target ADE and, specifically, on its dose-dependency.

Place, publisher, year, edition, pages
IEEE Computer Society , 2015.
National Category
Information Systems
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-123971ISBN: 978-1-4673-6798-1OAI: oai:DiVA.org:su-123971DiVA: diva2:878615
Available from: 2015-12-09 Created: 2015-12-09

Open Access in DiVA

No full text

By organisation
Department of Computer and Systems Sciences
Information Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 8 hits
ReferencesLink to record
Permanent link

Direct link