Change search
ReferencesLink to record
Permanent link

Direct link
Iron Doping in Spinel NiMn2O4: Stabilization of the Mesoporous Cubic Phase and Kinetics Activation toward Highly Reversible Li+ Storage
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 6
2015 (English)In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 27, no 22, 7698-7709 p.Article in journal (Refereed) Published
Abstract [en]

Quaternary oxide structures with a three-dimensional macro/mesoporous network are synthesized via a facile nanocasting method followed by a calcination process. Structural engineering integrates multiscale pores by using a hydrophilic membrane with tunable-porosity as the sacrificial template. Through tailoring the metal precursor ratio, the tetragonal sites of spinel oxide are preferentially occupied by iron, resulting in a stabilized mesoporous cubic phase. Crystal field theory together with compositional characterizations from energy-dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), Mossbauer, and electron energy loss spectroscopy (EELS) direct our detailed analysis of the cation distribution in the spinel structures. Galvanostatic tests based on the best performing electrode exhibits a robust cycle life stable for 1200 cycles at a high current density of 1500 mA g(-1). This good Li+ storage performance could be attributed to the mutually beneficial synergy of the optimal level of iron doping which improves the electrical conductivity and structural robustness, as well as the presence of extended, hierarchical macro/mesoporous network. Finally, we demonstrate three feasible surface modification strategies for the oxide anodes toward better reversibility of Li+ storage.

Place, publisher, year, edition, pages
2015. Vol. 27, no 22, 7698-7709 p.
National Category
Chemical Sciences Materials Engineering
Identifiers
URN: urn:nbn:se:su:diva-124740DOI: 10.1021/acs.chemmater.5b03288ISI: 000365465600021OAI: oai:DiVA.org:su-124740DiVA: diva2:892412
Available from: 2016-01-10 Created: 2016-01-04 Last updated: 2016-01-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Tai, Cheuk-Wai
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Chemistry of Materials
Chemical SciencesMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link