Change search
ReferencesLink to record
Permanent link

Direct link
Nambu-Goldstone effective theory of information at quantum criticality
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Number of Authors: 4
2015 (English)In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 92, no 12, 125002Article in journal (Refereed) Published
Abstract [en]

We establish a fundamental connection between quantum criticality of a many-body system, such as Bose-Einstein condensates, and its capacity of information-storage and processing. For deriving the effective theory of modes in the vicinity of the quantum critical point, we develop a new method by mapping a Bose-Einstein condensate of N-particles onto a sigma model with a continuous global (pseudo) symmetry that mixes bosons of different momenta. The Bogolyubov modes of the condensate are mapped onto the Goldstone modes of the sigma model, which become gapless at the critical point. These gapless Goldstone modes are the quantum carriers of information and entropy. Analyzing their effective theory, we observe information-processing properties strikingly similar to the ones predicted by the black hole portrait. The energy cost per qubit of information-storage vanishes in the large-N limit and the total information-storage capacity increases with N either exponentially or as a power law. The longevity of information-storage also increases with N, whereas the scrambling time in the over-critical regime is controlled by the Lyapunov exponent and scales logarithmically with N. This connection reveals that the origin of black hole information storage lies in the quantum criticality of the graviton Bose-gas, and that much simpler systems that can be manufactured in table-top experiments can exhibit very similar information-processing dynamics.

Place, publisher, year, edition, pages
2015. Vol. 92, no 12, 125002
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-125669DOI: 10.1103/PhysRevD.92.125002ISI: 000365870500013OAI: oai:DiVA.org:su-125669DiVA: diva2:894628
Available from: 2016-01-15 Created: 2016-01-15 Last updated: 2016-01-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wintergerst, Nico
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physical Review D
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 9 hits
ReferencesLink to record
Permanent link

Direct link