Change search
ReferencesLink to record
Permanent link

Direct link
Interaction between turbulent structures and particles in roughened channel
Stockholm University, Faculty of Science, Department of Meteorology .
Number of Authors: 4
2016 (English)In: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 78, 117-131 p.Article in journal (Refereed) Published
Abstract [en]

The distribution of inertial particles in turbulent flows is highly non-uniform and is driven by the local dynamics of the turbulent structures of the underlying carrier flow field. In the specific context of dilute particle-laden wall-bounded flows, deposition and resuspension mechanisms are dominated by the interaction between inertial particles and coherent turbulent structures characteristic of the wall region. The macroscopic behavior of these two-phase systems is influenced by particle inertia, which plays a role at the microscale of a single dispersed element. These turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the wall roughness. The effect of the roughness on turbulent transport in dilute suspension has been still poorly investigated. The issue is discussed here by addressing direct numerical simulation (DNS), at friction Reynolds number Re-tau = 180, of a dilute dispersion of heavy particles in a turbulent channel flow, spanning two orders of magnitude of particle inertia. The irregular wall roughness is obtained through the superimposition of four sinusoidal functions of different wavelengths and random amplitudes. We use DNS combined with Lagrangian particle tracking to characterize the effect of inertia on particle preferential accumulation, looking at the effect of roughness on particle distribution, by comparing the statistics computed for fluid and particles of different size and observing differences in terms of distribution patterns and preferential sampling.

Place, publisher, year, edition, pages
2016. Vol. 78, 117-131 p.
Keyword [en]
Particle-laden flow, Turbulence, Lagrangian tracking, Particle mass flux, Roughness, DNS
National Category
Fluid Mechanics and Acoustics Meteorology and Atmospheric Sciences
URN: urn:nbn:se:su:diva-126380DOI: 10.1016/j.ijmultiphaseflow.2015.09.011ISI: 000367771300010OAI: diva2:902957
Available from: 2016-02-12 Created: 2016-02-01 Last updated: 2016-02-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sardina, Gaetano
By organisation
Department of Meteorology
In the same journal
International Journal of Multiphase Flow
Fluid Mechanics and AcousticsMeteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 436 hits
ReferencesLink to record
Permanent link

Direct link