Change search
ReferencesLink to record
Permanent link

Direct link
Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Number of Authors: 1
2016 (English)In: Biological Reviews, ISSN 1464-7931, E-ISSN 1469-185X, Vol. 91, no 1, 168-186 p.Article in journal (Refereed) Published
Abstract [en]

The origins of interactions between angiosperms and fruit-eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm-frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm-frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm-frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm-frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene-Oligocene boundary (around 34Mya) resulted in more semi-open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a flying frugivore niche' exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families, and many of the originations of fleshy fruits occurred well after the peak in the early Eocene. (vi) During periods associated with environmental change altering coevolutionary networks and opening of niche space, reciprocal coevolution may result in strong directional selection formative for both fruit and frugivore evolution. Further evidence is needed to test this hypothesis. Based on the abundance of plant lineages with various forms of fleshy fruits, and the diversity of frugivores, it is suggested that periods of rapid coevolution in angiosperms and frugivores occurred numerous times during the 80million years of angiosperm-frugivore evolution.

Place, publisher, year, edition, pages
2016. Vol. 91, no 1, 168-186 p.
Keyword [en]
coevolution, fleshy fruits, bats, birds, megafauna, multituberculates, primates, rodents
National Category
Biological Sciences
URN: urn:nbn:se:su:diva-126875DOI: 10.1111/brv.12164ISI: 000367985200008PubMedID: 25530412OAI: diva2:905446
Available from: 2016-02-22 Created: 2016-02-16 Last updated: 2016-02-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Eriksson, Ove
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
Biological Reviews
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 28 hits
ReferencesLink to record
Permanent link

Direct link