Change search
ReferencesLink to record
Permanent link

Direct link
Accessibility of reformulated mathematical content
Stockholm University, Faculty of Humanities, Department of Philosophy.ORCID iD: 0000-0002-0004-0681
(English)In: Synthese, ISSN 0039-7857, E-ISSN 1573-0964Article in journal (Refereed) Epub ahead of print
Abstract [en]

I challenge a claim that seems to be made when nominalists offer reformulations of the content of mathematical beliefs, namely that these reformulations are accessible to everyone. By doing so, I argue that these theories cannot account for the mathematical knowledge that ordinary people have. In the first part of the paper I look at reformulations that employ the concept of proof, such as those of Mary Leng and Ottavio Bueno. I argue that ordinary people don’t have many beliefs about proofs, and that they are not in a position to acquire knowledge about proofs autonomously. The second part of the paper is concerned with other reformulations of content, such as those of Hartry Field and Stephen Yablo. There too, the problem is that people are not able to acquire knowledge of the reformulated propositions autonomously. Ordinary people simply do not have beliefs with the kind of content that the nominalists need, for their theory to account for the mathematical knowledge of ordinary people. All in all then, the conclusion is that a large number of theories that suggest reformulations of mathematical content yield contents that are inaccessible for most people. Thus, these theories are limited, in that they cannot account for the mathematical knowledge of ordinary people.

Keyword [en]
Reformulated content, Nominalism, Proof capacities, Empirical Adequacy
National Category
URN: urn:nbn:se:su:diva-127324DOI: 10.1007/s11229-016-1054-8OAI: diva2:908327
Available from: 2016-03-02 Created: 2016-03-02 Last updated: 2016-04-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Buijsman, Stefan
By organisation
Department of Philosophy
In the same journal

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 42 hits
ReferencesLink to record
Permanent link

Direct link