Change search
ReferencesLink to record
Permanent link

Direct link
Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments
Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre, Baltic Nest Institute.
Number of Authors: 3
2016 (English)In: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 434, 241-251 p.Article in journal (Refereed) Published
Abstract [en]

Coastal hypoxia is a growing and persistent problem largely attributable to enhanced terrestrial nutrient (i.e., nitrogen and phosphorus) loading. Recent studies suggest phosphorus removal through burial of iron (II) phosphates, putatively vivianite, plays an important role in nutrient cycling in the Baltic Sea the world's largest anthropogenic dead zone yet the dynamics of iron (II) phosphate formation are poorly constrained. To address this, a reactive-transport model was used to reconstruct the diagenetic and depositional history of sediments in the Faro basin, a deep anoxic and sulphidic region of the Baltic Sea where iron (II) phosphates have been observed. Simulations demonstrate that transport of iron from shelf sediments to deep basins enhances vivianite formation while sulphide concentrations are low, but that pyrite forms preferentially over vivianite when sulphate reduction intensifies due to elevated organic loading. Episodic reoxygenation events, associated with major inflows of oxic waters, encourage the retention of iron oxyhydroxides and iron-bound phosphorus in sediments, increasing vivianite precipitation as a result. Results suggest that artificial reoxygenation of the Baltic Sea bottom waters could sequester up to 3% of the annual external phosphorus loads as iron (II) phosphates, but this is negligible when compared to potential internal phosphorus loads due to dissolution of iron oxyhydroxides when low oxygen conditions prevail. Thus, enhancing vivianite formation through artificial reoxygenation of deep waters is not a viable engineering solution to eutrophication in the Baltic Sea. Finally, simulations suggest that regions with limited sulphate reduction and hypoxic intervals, such as eutrophic estuaries, could act as important phosphorus sinks by sequestering vivianite. This could potentially alleviate eutrophication in shelf and slope environments.

Place, publisher, year, edition, pages
2016. Vol. 434, 241-251 p.
Keyword [en]
iron, phosphorus, eutrophication, sediment geochemistry, reactive-transport modelling, Baltic Sea
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-127378DOI: 10.1016/j.epsl.2015.11.033ISI: 000368870500023OAI: oai:DiVA.org:su-127378DiVA: diva2:909465
Available from: 2016-03-07 Created: 2016-03-02 Last updated: 2016-03-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gustafsson, Bo G.
By organisation
Baltic Nest Institute
In the same journal
Earth and Planetary Science Letters
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link