CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt196",{id:"formSmash:upper:j_idt196",widgetVar:"widget_formSmash_upper_j_idt196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt204_j_idt207",{id:"formSmash:upper:j_idt204:j_idt207",widgetVar:"widget_formSmash_upper_j_idt204_j_idt207",target:"formSmash:upper:j_idt204:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Multivariate P-Eulerian polynomialsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-128347OAI: oai:DiVA.org:su-128347DiVA, id: diva2:914224
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt841",{id:"formSmash:j_idt841",widgetVar:"widget_formSmash_j_idt841",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt850",{id:"formSmash:j_idt850",widgetVar:"widget_formSmash_j_idt850",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt856",{id:"formSmash:j_idt856",widgetVar:"widget_formSmash_j_idt856",multiple:true}); Available from: 2016-03-23 Created: 2016-03-23 Last updated: 2016-04-22Bibliographically approved
##### In thesis

The P-Eulerian polynomial counts the linear extensions of a labeled partially ordered set, P, by their number of descents. It is known that the P-Eulerian polynomials are real-rooted for various classes of posets P. The purpose of this paper is to extend these results to polynomials in several variables. To this end we study multivariate extensions of P-Eulerian polynomials and prove that for certain posets these polynomials are stable, i.e., non-vanishing whenever all variables are in the upper half-plane of the complex plane. A natural setting for our proofs is the Malvenuto-Reutenauer algebra of permutations (or the algebra of free quasi-symmetric functions). In the process we identify an algebra on Dyck paths, which to our knowledge has not been studied before.

1. Combinatorics of stable polynomials and correlation inequalities$(function(){PrimeFaces.cw("OverlayPanel","overlay915712",{id:"formSmash:j_idt1493:0:j_idt1499",widgetVar:"overlay915712",target:"formSmash:j_idt1493:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2029",{id:"formSmash:j_idt2029",widgetVar:"widget_formSmash_j_idt2029",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2097",{id:"formSmash:lower:j_idt2097",widgetVar:"widget_formSmash_lower_j_idt2097",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2098_j_idt2100",{id:"formSmash:lower:j_idt2098:j_idt2100",widgetVar:"widget_formSmash_lower_j_idt2098_j_idt2100",target:"formSmash:lower:j_idt2098:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});