Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood-brain barrier model
Stockholm University, Faculty of Science, Department of Neurochemistry. Mahidol University, Thailand.
Stockholm University, Faculty of Science, Department of Neurochemistry.
Stockholm University, Faculty of Science, Department of Neurochemistry.
Show others and affiliations
Number of Authors: 5
2016 (English)In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 500, no 1-2, 128-135 p.Article in journal (Refereed) Published
Abstract [en]

Receptor-mediated transcytosis remains a major route for drug delivery across the blood-brain barrier (BBB). PepFect 32 (PF32), a peptide-based vector modified with targeting ligand (Angiopep-2) binding to low-density lipoprotein receptor-related protein-1 (LRP-1), was previously found to be a promising vector for plasmid delivery across an in vitro model of the BBB. Cellular uptake of PF32/plasmid DNA (pDNA) complexes was speculated the internalization via LRP-1 receptor. In this study, we prove that PF32/pDNA nanocomplexes are not only transported into brain endothelial cells via LRP-1 receptor-mediated endocytosis, but also via scavenger receptor class A and B (SCARA3, SCARA5, and SR-BI)-mediated endocytosis. SCARA3, SCARA5, and SR-BI are found to be expressed in the brain endothelial cells. Inhibition of these receptors leads to a reduction of the transfection. In conclusion, this study shows that scavenger receptors also play an essential role in the cellular uptake of the PF32/pDNA nanocomplexes.

Place, publisher, year, edition, pages
2016. Vol. 500, no 1-2, 128-135 p.
Keyword [en]
Blood-brain barrier, bEnd.3, Plasmid transfection, Scavenger receptors, angiopep-2, LRP-1 receptor, Receptor-mediated endocytosis
National Category
Physical Chemistry Biochemistry and Molecular Biology Pharmacology and Toxicology
Research subject
Neurochemistry with Molecular Neurobiology
Identifiers
URN: urn:nbn:se:su:diva-128163DOI: 10.1016/j.ijpharm.2016.01.014ISI: 000370049900013PubMedID: 26773601OAI: oai:DiVA.org:su-128163DiVA: diva2:915151
Available from: 2016-03-29 Created: 2016-03-21 Last updated: 2017-05-05Bibliographically approved
In thesis
1. Peptide-based delivery to glioblastoma cells studied by the blood-brain barrier model
Open this publication in new window or tab >>Peptide-based delivery to glioblastoma cells studied by the blood-brain barrier model
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Crossing the blood-brain barrier (BBB) is a great challenge for delivery of highly charged macromolecules such as nucleic acids and proteins to the brain. Cell-penetrating peptides (CPPs) are promising vectors to deliver various cargoes ranging from small molecules to large molecules such as antibodies, proteins, and nucleic acids. The BBB limits the passage of all large molecules to central nervous system (CNS), thus, CPP is a potential vector to use for oligonucleotide delivery across the BBB. In paper I, various CPPs were covalently conjugated with two different glioma-targeting peptides, glioma-homing peptide (gHo) and angiopep-2 (ANG). PepFect 32 (PF32), a conjugation between truncated PepFect 14 and ANG, was the most efficient vector to deliver plasmid DNA (pDNA) across a setup in vitro model of the BBB and showed the highest transfection in glioma cells. LRP-1 receptors, which are over-expressed in brain endothelial cells and glioma cells, were speculated to mediate the transcytosis of PF32:pDNA complexes across the BBB model since the ANG could target to LRP-1. In paper II, scavenger receptors class A and B (SCARA3, SCARA5, and SR-BI) were found to be expressed in the brain endothelial cells. Inhibition of these scavenger receptors led to a reduction of the transfection of PF32:pDNA complexes in the brain endothelial cells. Therefore, in the BBB model scavenger receptors also played a vital role as well as LRP-1 in the transport of oligonucleotides in the complex with peptide-based vector PF32.

In conclusion, PF32 is a potential vector to deliver pDNA across the BBB model and target to the glioma cells. The complexes of PF32:pDNA transport across the brain endothelial cells via receptor-mediated endocytosis pathway recognized by scavenger receptors and LRP-1. To improve the specificity and enhance the transport into the brain, the brain-homing devices are considered as a promising strategy for CNS drug delivery.

Place, publisher, year, edition, pages
Stockholm: Department of Neurochemistry, 2016. 33 p.
Keyword
peptide-based delivery, blood-brain barrier, glioblastoma
National Category
Other Chemistry Topics
Research subject
Neurochemistry with Molecular Neurobiology
Identifiers
urn:nbn:se:su:diva-129528 (URN)978-91-7649-432-5 (ISBN)
Presentation
2016-05-13, Heilbronnsalen, C458, Svante Arrhenius väg 16B, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2016-04-25 Created: 2016-04-25 Last updated: 2016-04-25Bibliographically approved
2. Cell-penetrating peptides targeting glioblastomas for nucleic acid delivery in the blood-brain barrier model
Open this publication in new window or tab >>Cell-penetrating peptides targeting glioblastomas for nucleic acid delivery in the blood-brain barrier model
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Glioblastoma multiforme is the most aggressive form of malignant brain tumor with poor prognosis. The efficacy of brain cancer treatment by chemotherapeutics is limited by the blood-brain barrier (BBB) which allows less than 2% of the small molecules and blocks almost all the macromolecules to transport into the brain. Delivery of the large molecules such as proteins and nucleic acids across the BBB is a great challenge for brain-targeted drug delivery. To overcome this obstacle, cell-penetrating peptides (CPPs) were used as vectors for delivery of nucleic acids across the BBB targeting glioblastomas. The CPPs have shown such promising carriers to deliver various cargoes ranging from small molecules to large molecules into the cells. This thesis is focused on the development of glioblastoma-targeting vectors based on modifications of the CPPs and the targeting peptides. The peptide-based vectors were developed to improve the transport of the nucleic acids across the BBB and specifically target glioblastomas.

In this thesis, a series of peptide-based vectors targeting glioblastomas were synthesized and modified with targeting peptides by either covalent conjugation or non-covalent complex formation. The delivery of plasmid DNA (pDNA) in the complex with the peptide-based vectors was studied in the in vitro model of the BBB. The role of receptors expressed on the BBB was investigated. Scavenger receptors class A and B were found to be expressed on the BBB, and they were involved in the delivery of the pDNA across the BBB model. Moreover, various targeting peptides were modified with hexaglutamate to form non-covalent complexes with the CPPs for small interfering RNA (siRNA) delivery to glioblastoma cells. The non-covalent complex of the CPP and the targeting peptide showed greater gene-silencing efficiency than the consecutively covalent conjugation of the CPP and the targeting peptide for siRNA delivery to glioblastoma cells. Lastly, a number of novel, amphipathic peptides were developed based on the model amphipathic peptide. The prediction of the biological effect of the designed peptides using quantitative structure-activity relationship model showed a correlation with the experimental data.

Finally, the CPP-based nucleic acid delivery vectors with homing peptide strategy have a potential for the BBB shuttle and the future use as a glioblastoma-targeted drug carrier in the in vivo studies and the clinical applications.

Place, publisher, year, edition, pages
Stockholm: Department of Neurochemistry, Stockholm University, 2017
Keyword
Blood-brain barrier model, nucleic acid delivery, glioblastomas, cell-penetrating peptides
National Category
Chemical Sciences
Research subject
Neurochemistry with Molecular Neurobiology
Identifiers
urn:nbn:se:su:diva-142109 (URN)978-91-7649-725-8 (ISBN)978-91-7649-726-5 (ISBN)
Public defence
2017-06-09, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

Available from: 2017-05-17 Created: 2017-04-27 Last updated: 2017-05-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Srimanee, ArtitaRegberg, JakobHällbrink, MattiasLangel, Ülo
By organisation
Department of Neurochemistry
In the same journal
International Journal of Pharmaceutics
Physical ChemistryBiochemistry and Molecular BiologyPharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf