CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt162",{id:"formSmash:upper:j_idt162",widgetVar:"widget_formSmash_upper_j_idt162",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt169_j_idt171",{id:"formSmash:upper:j_idt169:j_idt171",widgetVar:"widget_formSmash_upper_j_idt169_j_idt171",target:"formSmash:upper:j_idt169:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Combinatorics of stable polynomials and correlation inequalitiesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2016. , 32 p.
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-128584ISBN: 978-91-7649-375-5 (print)OAI: oai:DiVA.org:su-128584DiVA: diva2:915712
##### Public defence

2016-05-27, room 14, house 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt976",{id:"formSmash:j_idt976",widgetVar:"widget_formSmash_j_idt976",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt987",{id:"formSmash:j_idt987",widgetVar:"widget_formSmash_j_idt987",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt998",{id:"formSmash:j_idt998",widgetVar:"widget_formSmash_j_idt998",multiple:true});
##### Note

##### List of papers

This thesis contains five papers divided into two parts. In the first part, Papers I-IV, we study polynomials within the field of combinatorics. Here we study combinatorial properties as well as the zero distribution of the polynomials in question. The second part consists of Paper V, where we study correlating events in randomly oriented graphs.

In Paper I we give a new combinatorial interpretation of the stationary distribution of the partially asymmetric exclusion process in terms of colored permutations and decorated alternative trees. We also find a connection between the corresponding multivariate partition functions and the multivariate Eulerian polynomials for* r*-colored permutations.

In Paper II we study a multivariate refinement of *P*-Eulerian polynomials. We show that this refinement is stable (i.e., non-vanishing whenever the imaginary parts of its variables are all positive) for a large class of labeled posets.

In Paper III we use the technique of compatible polynomials to prove that the local *h*-polynomial of the *r*th edgewise subdivision of the (*n* - 1)-dimensional simplex 2* ^{V}* has only real zeros. We generalize the result and study matrices with interlacing preserving properties.

In Paper IV we introduce *s*-lecture hall partitions for labeled posets. We provide generating functions as well as establish a connection between statistics on wreath products and statistics on lecture hall partitions for posets.

In Paper V we prove that the events {*s* → *a*} (that there exists a directed path from *s* to *a*) and {*t* → *b*} are positively correlated in a random tournament for distinct vertices *a*, *s*, *b*, *t* ∈ *K _{n}*. We also discuss the correlation between the same events in two random graphs with random orientation.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript. Paper 5: Manuscript.

Available from: 2016-05-02 Created: 2016-03-30 Last updated: 2017-03-07Bibliographically approved1. Multivariate Eulerian Polynomials and Exclusion Processes$(function(){PrimeFaces.cw("OverlayPanel","overlay914190",{id:"formSmash:j_idt1077:0:j_idt1083",widgetVar:"overlay914190",target:"formSmash:j_idt1077:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Multivariate P-Eulerian polynomials$(function(){PrimeFaces.cw("OverlayPanel","overlay914224",{id:"formSmash:j_idt1077:1:j_idt1083",widgetVar:"overlay914224",target:"formSmash:j_idt1077:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Compatible polynomials and edgewise subdivisions$(function(){PrimeFaces.cw("OverlayPanel","overlay914196",{id:"formSmash:j_idt1077:2:j_idt1083",widgetVar:"overlay914196",target:"formSmash:j_idt1077:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Lecture hall P-partitions$(function(){PrimeFaces.cw("OverlayPanel","overlay914215",{id:"formSmash:j_idt1077:3:j_idt1083",widgetVar:"overlay914215",target:"formSmash:j_idt1077:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. CORRELATION OF PATHS BETWEEN DISTINCT VERTICES IN A RANDOMLY ORIENTED GRAPH$(function(){PrimeFaces.cw("OverlayPanel","overlay852856",{id:"formSmash:j_idt1077:4:j_idt1083",widgetVar:"overlay852856",target:"formSmash:j_idt1077:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1836",{id:"formSmash:j_idt1836",widgetVar:"widget_formSmash_j_idt1836",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1889",{id:"formSmash:lower:j_idt1889",widgetVar:"widget_formSmash_lower_j_idt1889",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1890_j_idt1892",{id:"formSmash:lower:j_idt1890:j_idt1892",widgetVar:"widget_formSmash_lower_j_idt1890_j_idt1892",target:"formSmash:lower:j_idt1890:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});