Change search
ReferencesLink to record
Permanent link

Direct link
Stochastic SIR epidemics in a population with households and schools
Stockholm University, Faculty of Science, Department of Mathematics.
Number of Authors: 3
2016 (English)In: Journal of Mathematical Biology, ISSN 0303-6812, E-ISSN 1432-1416, Vol. 72, no 5, 1177-1193 p.Article in journal (Refereed) Published
Abstract [en]

We study the spread of stochastic SIR (Susceptible Infectious Recovered) epidemics in two types of structured populations, both consisting of schools and households. In each of the types, every individual is part of one school and one household. In the independent partition model, the partitions of the population into schools and households are independent of each other. This model corresponds to the well-studied household-workplace model. In the hierarchical model which we introduce here, members of the same household are also members of the same school. We introduce computable branching process approximations for both types of populations and use these to compare the probabilities of a large outbreak. The branching process approximation in the hierarchical model is novel and of independent interest. We prove by a coupling argument that if all households and schools have the same size, an epidemic spreads easier (in the sense that the number of individuals infected is stochastically larger) in the independent partition model. We also show by example that this result does not necessarily hold if households and/or schools do not all have the same size.

Place, publisher, year, edition, pages
2016. Vol. 72, no 5, 1177-1193 p.
Keyword [en]
SIR epidemics, Structured populations, Branching processes, Coupling
National Category
Biological Sciences Mathematics
Identifiers
URN: urn:nbn:se:su:diva-128500DOI: 10.1007/s00285-015-0901-4ISI: 000371294400002PubMedID: 26070348OAI: oai:DiVA.org:su-128500DiVA: diva2:918413
Available from: 2016-04-11 Created: 2016-03-30 Last updated: 2016-04-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Trapman, Pieter
By organisation
Department of Mathematics
In the same journal
Journal of Mathematical Biology
Biological SciencesMathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 6 hits
ReferencesLink to record
Permanent link

Direct link