Change search
ReferencesLink to record
Permanent link

Direct link
Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab).
Show others and affiliations
2016 (English)In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27, no 8, 1210-1219 p.Article in journal (Refereed) Published
Abstract [en]

Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. In Saccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that the FES1 transcript undergoes unique 3' alternative splicing that results in two equally active isoforms with alternative C-termini, Fes1L and Fes1S. Fes1L is actively targeted to the nucleus and represents the first identified nuclear Hsp70 nucleotide exchange factor. In contrast, Fes1S localizes to the cytosol and is essential to maintain proteostasis. In the absence of Fes1S, the heat-shock response is constitutively induced at normally non-stressful conditions. Moreover, cells display severe growth defects when elevated temperatures, amino acid analogues or the ectopic expression of misfolded proteins, induce protein misfolding. Importantly, misfolded proteins are not targeted for degradation by the ubiquitin-proteasome system. These observations support the notion that cytosolic Fes1S maintains proteostasis by supporting the removal of toxic misfolded proteins by proteasomal degradation. This study provides key findings for the understanding of the organization of protein quality control mechanisms in the cytosol and nucleus.

Place, publisher, year, edition, pages
2016. Vol. 27, no 8, 1210-1219 p.
National Category
Cell Biology
Research subject
Cell Biology
Identifiers
URN: urn:nbn:se:su:diva-129116DOI: 10.1091/mbc.E15-10-0697ISI: 000375753600006PubMedID: 26912797OAI: oai:DiVA.org:su-129116DiVA: diva2:919687
Available from: 2016-04-14 Created: 2016-04-14 Last updated: 2016-06-07Bibliographically approved
In thesis
1. Regulation of Hsp70 function by nucleotide-exchange factors
Open this publication in new window or tab >>Regulation of Hsp70 function by nucleotide-exchange factors
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Protein folding is the process in which polypeptides in their non-native states attain the unique folds of their native states. Adverse environmental conditions and genetic predisposition challenge the folding process and accelerate the production of proteotoxic misfolded proteins. Misfolded proteins are selectively recognized and removed from the cell by processes of protein quality control (PQC). In PQC molecular chaperones of the Heat shock protein 70 kDa (Hsp70) family play important roles by recognizing and facilitating the removal of misfolded proteins. Hsp70 function is dependent on cofactors that regulate the intrinsic ATPase activity of the chaperone. In this thesis I have used yeast genetic, cell biological and biochemical experiments to gain insight into the regulation of Hsp70 function in PQC by nucleotide-exchange factors (NEFs). Study I shows that the NEF Fes1 is a key factor essential for cytosolic PQC. A reverse genetics approach demonstrated that Fes1 NEF activity is required for the degradation of misfolded proteins associated with Hsp70 by the ubiquitin-proteasome system. Specifically, Fes1 association with Hsp70-substrate complexes promotes interaction of the substrate with downstream ubiquitin E3 ligase Ubr1. The consequences of genetic removal of FES1 (fes1Δ) are the failure to degrade misfolded proteins, the accumulation of protein aggregates and constitutive induction of the heat-shock response. Taken the experimental data together, Fes1 targets misfolded proteins for degradation by releasing them from Hsp70. Study II describes an unusual example of alternative splicing of FES1 transcripts that leads to the expression of the two alternative splice isoforms Fes1S and Fes1L. Both isoforms are functional NEFs but localize to different compartments. Fes1S is localized to the cytosol and is required for the efficient degradation of Hsp70-associated misfolded proteins. In contrast, Fes1L is targeted to the nucleus and represents the first identified nuclear NEF in yeast. The identification of distinctly localized Fes1 isoforms have implications for the understanding of the mechanisms underlying nucleo-cytoplasmic PQC. Study III reports on the mechanism that Fes1 employs to regulate Hsp70 function. Specifically Fes1 carries an N-terminal domain (NTD) that is conserved throughout the fungal kingdom. The NTD is flexible, modular and is required for the cellular function of Fes1. Importantly, the NTD forms ATP-sensitive complexes with Hsp70 suggesting that it competes substrates of the chaperone during Fes1-Hsp70 interactions. Study IV reports on methodological development for the efficient assembly of bacterial protein-expression plasmids using yeast homologous recombination cloning and the novel vector pSUMO-YHRC. The findings support the notion that Fes1 plays a key role in determining the fate of Hsp70-associated misfolded substrates and thereby target them for proteasomal degradation. From a broader perspective, the findings provide information essential to develop models that describe how Hsp70 function is regulated by different NEFs to participate in protein folding and degradation.

Place, publisher, year, edition, pages
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2016. 73 p.
Keyword
Heat shock proteins (Hsps), Hsp70, Molecular chaperones, Nucleotide-exchange factors (NEFs), Protein quality control (PQC), Proteostasis, Ubiquitin-proteasome system
National Category
Biological Sciences Cell Biology
Research subject
Cell Biology
Identifiers
urn:nbn:se:su:diva-129118 (URN)978-91-7649-376-2 (ISBN)
Public defence
2016-06-10, Högbomsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.

Available from: 2016-05-18 Created: 2016-04-14 Last updated: 2016-05-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Gowda, Naveen Kumar ChandappaKaimal, Jayasankar MohanakrishnanMasser, Anna E.Kang, WenjingFriedländer, Marc R.Andréasson, Claes
By organisation
Department of Molecular Biosciences, The Wenner-Gren InstituteScience for Life Laboratory (SciLifeLab)
In the same journal
Molecular Biology of the Cell
Cell Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link