Change search
ReferencesLink to record
Permanent link

Direct link
Constrained growth flips the direction of optimal phenological responses among annual plants
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Swedish University of Agricultural Sciences, Sweden.
Show others and affiliations
Number of Authors: 6
2016 (English)In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 209, no 4, 1591-1599 p.Article in journal (Refereed) Published
Abstract [en]

Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory.

Place, publisher, year, edition, pages
2016. Vol. 209, no 4, 1591-1599 p.
Keyword [en]
climate change, constrained growth, flowering, life history, optimal control theory, phenology, productivity, season
National Category
Biological Sciences
URN: urn:nbn:se:su:diva-129620DOI: 10.1111/nph.13706ISI: 000373379800027PubMedID: 26548947OAI: diva2:925557
Available from: 2016-05-02 Created: 2016-04-26 Last updated: 2016-05-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Bolmgren, Kjell
By organisation
Department of Ecology, Environment and Plant Sciences
In the same journal
New Phytologist
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 26 hits
ReferencesLink to record
Permanent link

Direct link