Change search
ReferencesLink to record
Permanent link

Direct link
Tuning the high-temperature properties of Pr2NiO4+delta by simultaneous Pr- and Ni-cation replacement
Show others and affiliations
Number of Authors: 12
2016 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, no 40, 33951-33958 p.Article in journal (Refereed) Published
Abstract [en]

Novel Pr2-xSrxNi1-xCoxO4 +/-delta (x = 0.25; 0.5; 0.75) oxides with the tetragonal K2NiF4-type structure have been prepared. Room-temperature neutron powder diffraction (NPD) study of x = 0.25 and 0.75 phases together with iodometric titration results have shown the formation of hyperstoichiometric oxide for x = 0.25 (delta = 0.09(2)) and a stoichiometric one for x = 0.75. High-temperature X-ray powder diffraction (HT XRPD) showed substantial anisotropy of the thermal expansion coefficient (TEC) along the a-and c-axis of the crystal structure, which increases with increasing the Co content from TEC(c)/TEC(a) = 2.4 (x = 0.25) to 4.3 (x = 0.75). High-temperature NPD (HT NPD) study of the x = 0.75 sample reveals that a very high expansion of the axial (Ni/Co)-O bonds (75.7 ppm K-1 in comparison with 9.1 ppm K-1 for equatorial ones) is responsible for such behaviour, and is caused by a temperature-induced transition between low- and high-spin states of Co3+. This scenario has been confirmed by high-temperature magnetization measurements on a series of Pr2-xSrxNi1-xCoxO4 +/-delta samples. For compositions with high Ni content (x = 0.25 and 0.5) we synthesised K2NiF4-type oxides Pr2-x-ySrx+y(Ni1-xCox)O-4 +/-delta, y = 0.0-0.75 (x = 0.25); y = 0.0-0.5 (x = 0.5). The studies of the TEC, high-temperature electrical conductivity in air, chemical stability of the prepared compounds in oxygen and toward interaction with Ce2-xGdxO2-x/2 (GDC) at high temperatures reveal optimal behaviour of Pr1.35Sr0.65Ni0.75Co0.25O4+delta. This compound shows stability in oxygen at 900 degrees C and does not react with GDC at least up to 1200 degrees C. It features low TEC of 13 ppm K-1 and high-temperature electrical conductivity in air of 280 S cm(-1) at 900 degrees C, thus representing a promising composition for use as a cathode material in intermediate temperature solid oxide fuel cells (IT-SOFC).

Place, publisher, year, edition, pages
2016. Vol. 6, no 40, 33951-33958 p.
National Category
Chemical Sciences
URN: urn:nbn:se:su:diva-130013DOI: 10.1039/c6ra03099hISI: 000374045000086OAI: diva2:927104
Available from: 2016-05-11 Created: 2016-05-09 Last updated: 2016-07-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Svensson, Gunnar
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
RSC Advances
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link