Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of a Fragment-Based Scaffold that Inhibits the Glycosyltransferase WaaG from Escherichia coli
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
Number of Authors: 6
2016 (English)In: Antibiotics, ISSN 0066-4774, E-ISSN 2079-6382, Vol. 5, no 1Article in journal (Refereed) Published
Abstract [en]

WaaG is a glycosyltransferase that is involved in the biosynthesis of lipopolysaccharide in Gram-negative bacteria. Inhibitors of WaaG are highly sought after as they could be used to inhibit the biosynthesis of the core region of lipopolysaccharide, which would improve the uptake of antibiotics. Herein, we establish an activity assay for WaaG using C-14-labeled UDP-glucose and LPS purified from a increment waaG strain of Escherichia coli. We noted that addition of the lipids phosphatidylglycerol (PG) and cardiolipin (CL), as well as the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) increased activity. We then use the assay to determine if three molecular scaffolds, which bind to WaaG, could inhibit its activity in vitro. We show that 4-(2-amino-1,3-thiazol-4-yl)phenol inhibits WaaG (IC50 1.0 mM), but that the other scaffolds do not. This study represents an important step towards an inhibitor of WaaG by fragment-based lead discovery.

Place, publisher, year, edition, pages
2016. Vol. 5, no 1
Keyword [en]
lipopolysaccharide, glucosyltransferase, Gram-negative bacteria, scaffold, fragment-based lead discovery
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-129989DOI: 10.3390/antibiotics5010010ISI: 000373607800003OAI: oai:DiVA.org:su-129989DiVA: diva2:928006
Available from: 2016-05-13 Created: 2016-05-09 Last updated: 2017-10-30Bibliographically approved
In thesis
1. Antibiotic uptake in Gram-negative bacteria
Open this publication in new window or tab >>Antibiotic uptake in Gram-negative bacteria
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The increasing emergence and spread of antibiotic-resistant bacteria is a serious threat to public health. Of particular concern are Gram-negative bacteria such as Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. Some of these strains are resistant to a large number of antibiotics and thus our treatment options are rapidly declining. In addition to the increasing number of antibiotic-resistant bacteria, a major problem is that many of the antibiotics at our disposal are ineffective against Gram-negative bacteria. This is partly due to the properties of the outer membrane (OM) which prevents efficient uptake. The overarching goal of this thesis was to investigate how the OM of the Gram-negative bacterium E. coli could be weakened to improve the activity of antibiotics.

In the first two papers of my thesis (paper I + II), I investigated the periplasmic chaperone network which consists of the two parallel pathways SurA and Skp/DegP. This network is essential for the integrity of the OM and strains lacking either SurA or Skp are defective in the assembly of the OM, which results in an increased sensitivity towards vancomycin and other antimicrobials. We identified a novel component of the periplasmic chaperone network, namely YfgM, and showed that it operates in the same network as Skp and SurA/DegP. In particular, we demonstrated that deletion of YfgM in strains with either a ΔsurA or Δskp background further compromised the integrity of the OM, as evidenced by an increased sensitivity towards vancomycin.

In the remaining two papers of my thesis (paper III + IV), the goal was to characterize small molecules that permeabilize the OM and thus could be used to improve the activity of antibiotics. Towards this goal, we performed a high-throughput screen and identified an inhibitor of the periplasmic chaperone LolA, namely MAC-13243, and showed that it can be used to permeabilize the OM of E. coli (paper III). We further demonstrated that MAC-13243 can be used to potentiate the activity of antibiotics which are normally ineffective against E. coli. In the last paper of my thesis (paper IV), we undertook a more specific approach and wanted to identify an inhibitor against the glycosyltransferase WaaG. This enzyme is involved in the synthesis of LPS and genetic inactivation of WaaG results in a defect in the OM, which leads to an increased sensitivity to various antibiotics. In this paper, we identified a small molecular fragment (compound L1) and showed that it can be used to inhibit the activity of WaaG in vitro.

To summarize, this thesis provides novel insights into how the OM of the Gram-negative bacterium E. coli can be weakened by using small molecules. We believe that the two identified small molecules represent important first steps towards the design of more potent inhibitors that could be used in clinics to enhance the activity of antibiotics.

Place, publisher, year, edition, pages
Department of Biochemistry and Biophysics, Stockholm University, 2017
Keyword
Gram-negative bacteria, Antibiotic uptake, Outer membrane, Lipopolysaccharide
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-148541 (URN)978-91-7797-041-5 (ISBN)978-91-7797-042-2 (ISBN)
Public defence
2017-12-12, Magnélisalen Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.

Available from: 2017-11-17 Created: 2017-10-29 Last updated: 2017-11-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Muheim, ClaudioDaley, Daniel O.Widmalm, Göran
By organisation
Department of Biochemistry and BiophysicsDepartment of Organic Chemistry
In the same journal
Antibiotics
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 511 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf