Change search
ReferencesLink to record
Permanent link

Direct link
Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges
Stockholm University, Faculty of Science, Department of Physical Geography. University of New Hampshire, USA.
Show others and affiliations
Number of Authors: 10
2016 (English)In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 121, no 3, 621-649 p.Article, review/survey (Refereed) Published
Abstract [en]

Terrestrial hydrology is central to the Arctic system and its freshwater circulation. Water transport and water constituents vary, however, across a very diverse geography. In this paper, which is a component of the Arctic Freshwater Synthesis, we review the central freshwater processes in the terrestrial Arctic drainage and how they function and change across seven hydrophysiographical regions (Arctic tundra, boreal plains, shield, mountains, grasslands, glaciers/ice caps, and wetlands). We also highlight links between terrestrial hydrology and other components of the Arctic freshwater system. In terms of key processes, snow cover extent and duration is generally decreasing on a pan-Arctic scale, but snow depth is likely to increase in the Arctic tundra. Evapotranspiration will likely increase overall, but as it is coupled to shifts in landscape characteristics, regional changes are uncertain and may vary over time. Streamflow will generally increase with increasing precipitation, but high and low flows may decrease in some regions. Continued permafrost thaw will trigger hydrological change in multiple ways, particularly through increasing connectivity between groundwater and surface water and changing water storage in lakes and soils, which will influence exchange of moisture with the atmosphere. Other effects of hydrological change include increased risks to infrastructure and water resource planning, ecosystem shifts, and growing flows of water, nutrients, sediment, and carbon to the ocean. Coordinated efforts in monitoring, modeling, and processing studies at various scales are required to improve the understanding of change, in particular at the interfaces between hydrology, atmosphere, ecology, resources, and oceans.

Place, publisher, year, edition, pages
2016. Vol. 121, no 3, 621-649 p.
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-130655DOI: 10.1002/2015JG003131ISI: 000374345000004OAI: oai:DiVA.org:su-130655DiVA: diva2:932334
Available from: 2016-06-01 Created: 2016-05-27 Last updated: 2016-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bring, Arvid
By organisation
Department of Physical Geography
In the same journal
Journal of Geophysical Research - Biogeosciences
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 9 hits
ReferencesLink to record
Permanent link

Direct link