Change search
ReferencesLink to record
Permanent link

Direct link
Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults
Show others and affiliations
Number of Authors: 17
2016 (English)In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 131, 142-154 p.Article in journal (Refereed) Published
Abstract [en]

Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77 years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.

Place, publisher, year, edition, pages
2016. Vol. 131, 142-154 p.
Keyword [en]
Exercise, Neurotrophic factors, Hippocampus, Vascular plasticity, Aging
National Category
Neurosciences Neurology Radiology, Nuclear Medicine and Medical Imaging
URN: urn:nbn:se:su:diva-130637DOI: 10.1016/j.neuroimage.2015.10.084ISI: 000374635200015OAI: diva2:932958
Available from: 2016-06-02 Created: 2016-05-27 Last updated: 2016-06-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Aging Research Center (ARC), (together with KI)
In the same journal
NeurosciencesNeurologyRadiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 4 hits
ReferencesLink to record
Permanent link

Direct link