Change search
ReferencesLink to record
Permanent link

Direct link
Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton-lead collisions at root s(NN)=5.02 TeV with the ATLAS detector
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 2843
2016 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 4, 199Article in journal (Refereed) Published
Abstract [en]

The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 mu b(-1) of proton-lead collisions at a nucleon-nucleon centre-of-mass energy of root s(NN) = 5.02 TeV using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The p + Pb collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the p + Pb collision have been carried out using the Glauber model as well as two Glauber-Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon-nucleon collisions in the modelling of the initial state of p + Pb collisions.

Place, publisher, year, edition, pages
2016. Vol. 76, no 4, 199
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-130878DOI: 10.1140/epjc/s10052-016-4002-3ISI: 000375306400002OAI: oai:DiVA.org:su-130878DiVA: diva2:933903
Available from: 2016-06-07 Created: 2016-06-07 Last updated: 2016-06-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Abulaiti, YimingÅsman, BarbroBendtz, KatarinaBessidskaia Bylund, OlgaBohm, ChristianClément, ChristopheEriksson, DanielHellman, StenJohansson, K. ErikJon-And, KerstinKhandanyan, HovhannesKim, HyeonKlimek, PawelLundberg, OlofMilstead, David A.Moa, TorbjörnMolander, SimonPetridis, AndreasPlucinski, PawelRossetti, ValerioSilverstein, Samuel B.Sjölin, JörgenStrandberg, SaraTylmad, Maja
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
European Physical Journal C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 16 hits
ReferencesLink to record
Permanent link

Direct link