References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Spectral analysis of the Moore-Penrose inverse of a large dimensional sample covariance matrixPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Journal of Multivariate Analysis, ISSN 0047-259X, E-ISSN 1095-7243, Vol. 148, 160-172 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2016. Vol. 148, 160-172 p.
##### Keyword [en]

CLT, large-dimensional asymptotics, Moore-Penrose inverse, random matrix theory
##### National Category

Probability Theory and Statistics
##### Research subject

Statistics
##### Identifiers

URN: urn:nbn:se:su:diva-130903DOI: 10.1016/j.jmva.2016.03.001ISI: 000375826400012OAI: oai:DiVA.org:su-130903DiVA: diva2:934088
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2016-06-08 Created: 2016-06-08 Last updated: 2016-06-14Bibliographically approved

For a sample of $n$ independent identically distributed $p$-dimensional centered random vectorswith covariance matrix $\bSigma_n$ let $\tilde{\bS}_n$ denote the usual sample covariance(centered by the mean) and $\bS_n$ the non-centered sample covariance matrix (i.e. the matrix of second moment estimates), where $p> n$. In this paper, we provide the limiting spectral distribution andcentral limit theorem for linear spectralstatistics of the Moore-Penrose inverse of $\bS_n$ and $\tilde{\bS}_n$. We consider the large dimensional asymptotics when the number of variables $p\rightarrow\infty$ and the sample size $n\rightarrow\infty$ such that $p/n\rightarrow c\in (1, +\infty)$. We present a Marchenko-Pastur law for both types of matrices, which shows that the limiting spectral distributions for both sample covariance matrices are the same. On the other hand, we demonstrate that the asymptotic distribution of linear spectral statistics of the Moore-Penrose inverse of $\tilde{\bS}_n$ differs in the mean from that of $\bS_n$.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});