Change search
ReferencesLink to record
Permanent link

Direct link
Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling
Stockholm University, Faculty of Science, Department of Physical Geography.
Stockholm University, Faculty of Science, Department of Physical Geography.
Stockholm University, Faculty of Science, Department of Physical Geography.
Show others and affiliations
Number of Authors: 8
2016 (English)In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 52, no 3, 1591-1606 p.Article in journal (Refereed) Published
Abstract [en]

Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this study we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels were observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. As sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.

Place, publisher, year, edition, pages
2016. Vol. 52, no 3, 1591-1606 p.
Keyword [en]
permafrost, groundwater, numerical modeling, advective heat transfer
National Category
Earth and Related Environmental Sciences Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-130982DOI: 10.1002/2015WR017571ISI: 000374706300003OAI: oai:DiVA.org:su-130982DiVA: diva2:936197
Available from: 2016-06-13 Created: 2016-06-09 Last updated: 2016-06-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sjöberg, YlvaSannel, A. Britta K.Pannetier, RomainFrampton, AndrewLyon, Steve W.
By organisation
Department of Physical Geography
In the same journal
Water resources research
Earth and Related Environmental SciencesBiological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 2 hits
ReferencesLink to record
Permanent link

Direct link