Change search
ReferencesLink to record
Permanent link

Direct link
Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic Sea microcosm
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
Show others and affiliations
Number of Authors: 6
2016 (English)In: Journal of Proteomics, ISSN 1874-3919, E-ISSN 1876-7737, Vol. 137, 97-106 p.Article in journal (Refereed) Published
Abstract [en]

Pharmaceuticals, among them thep-adrenoceptor blocker propranolol, are an important group of environmental contaminants reported in European waters. Laboratory exposure to pharmaceuticals on marine species has been performed without considering the input of the ecosystem flow. To unravel the ecosystem response to long-term exposure to propranolol we have performed long-term exposure to propranolol and low salinity in microcosms. We applied shotgun proteomic analysis to gills of Mytilus edulis from those Baltic Sea microcosms and identified 2071 proteins with a proteogenomic strategy. The proteome profiling patterns from the 587 highly reproductive proteins among groups define salinity as a key factor in the mussel's response to propranolol. Exposure at low salinity drives molecular mechanisms of adaptation based on a decrease in the abundance of several cytoskeletal proteins, signalling and intracellular membrane trafficking pathway combined with a response towards the maintenance of transcription and translation. The exposure to propranolol combined with low salinity modulates the expression of structural proteins including cilia functions and decreases the expression of membrane protein transporters. This study reinforces the environment concerns of the impact of low salinity in combination with anthropogenic pollutants and anticipates critical physiological conditions for the survival of the blue mussel in the northern areas. Biological significance: Applying shotgun proteomic analysis to M. edulis gills samples from a long-term microcosm exposure to propranolol and following a proteogenomic identification strategy, we have identified 2071 proteins. The proteomic analysis unrevealed which molecular mechanisms drive the adaptation to low salinity stress and how salinity modulates the effects of exposure to propranolol. These results reinforce the idea of the impact of low salinity in combination with anthropogenic pollutants and anticipate critical physiological condition.

Place, publisher, year, edition, pages
2016. Vol. 137, 97-106 p.
Keyword [en]
Mytilus edulis, Shotgun proteomics, Propranolol, Low salinity, Environmental monitoring, Climate change
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-130967DOI: 10.1016/j.jprot.2016.01.010ISI: 000374368800010PubMedID: 26820222OAI: oai:DiVA.org:su-130967DiVA: diva2:936612
Available from: 2016-06-14 Created: 2016-06-09 Last updated: 2016-06-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Warholm, Per
By organisation
Department of Biochemistry and BiophysicsScience for Life Laboratory (SciLifeLab)
In the same journal
Journal of Proteomics
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 8 hits
ReferencesLink to record
Permanent link

Direct link