Change search
ReferencesLink to record
Permanent link

Direct link
Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and C-13 NMR spin relaxation: conformational preferences of alpha-L-Rhap-alpha-(1 -> 2)-alpha-L-Rhap-OMe in water and dimethyl sulfoxide solutions
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Show others and affiliations
Number of Authors: 6
2016 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 4, 3086-3096 p.Article in journal (Refereed) Published
Abstract [en]

The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide alpha-L-Rhap-alpha-(1 -> 2)-alpha-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-C-13]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)J(CH) and (3)J(CC) coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the psi torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The C-13 NMR spin relaxation parameters T-1, T-2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d(6) at two magnetic field strengths, with standard deviations <= 1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed C-13 relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of C-13 relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less.

Place, publisher, year, edition, pages
2016. Vol. 18, no 4, 3086-3096 p.
National Category
Chemical Sciences Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-127878DOI: 10.1039/c5cp06288hISI: 000369506000088PubMedID: 26741055OAI: oai:DiVA.org:su-127878DiVA: diva2:940457
Available from: 2016-06-21 Created: 2016-03-14 Last updated: 2016-06-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Widmalm, Göran
By organisation
Department of Organic Chemistry
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Chemical SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 4 hits
ReferencesLink to record
Permanent link

Direct link