Change search
ReferencesLink to record
Permanent link

Direct link
Water use by Swedish boreal forests in a changing climate
Show others and affiliations
Number of Authors: 11
2016 (English)In: Functional Ecology, ISSN 0269-8463, E-ISSN 1365-2435, Vol. 30, no 5, 690-699 p.Article in journal (Refereed) Published
Abstract [en]

1. The rising levels of atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to substantially affect the terrestrial water and energy balance by altering the stomatal conductance and transpiration of trees. 2. Many models assume decreases in stomatal conductance and plant water use under rising [CO2], which has been used as a plausible explanation for the positive global trend in river run-off over the past century. Plant water use is, however, also affected by changes in temperature, precipitation and land use, and there is yet no consensus about the contribution of different drivers to temporal trends of evapotranspiration (ET) and river run-off. 3. In this study, we assessed water-use responses to climate change by using both long-term monitoring and experimental data in Swedish boreal forests. Historical trends and patterns in ET of large-scale boreal landscapes were determined using climate and run-off data from the past 50 years, while explicit tree water-use responses to elevated [CO2] and/or air temperature were examined in a whole-tree chamber experiment using mature Norway spruce (Picea abies (L.) Karst.) trees. 4. The results demonstrated that ET estimated from water budgets at the catchment scale increased by 18% over the past 50 years while run-off did not significantly change. The increase in ET was related to increasing precipitation and a steady increase in forest standing biomass over time. The whole-tree chamber experiment showed that Norway spruce trees did not save water under elevated [CO2] and that experimentally elevated air temperature did not increase transpiration as decreased stomatal conductance cancelled the effect of higher vapour pressure deficit in warmed air. 5. Our findings have important implications for projections of future water use of European boreal coniferous forests, indicating that changes in precipitation and standing biomass are more important than the effects of elevated [CO2] or temperature on transpiration rates.

Place, publisher, year, edition, pages
2016. Vol. 30, no 5, 690-699 p.
Keyword [en]
carbon dioxide, climate change, Norway spruce, Picea abies, temperature, transpiration, water use, whole-tree chambers
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-131555DOI: 10.1111/1365-2435.12546ISI: 000375941800003OAI: oai:DiVA.org:su-131555DiVA: diva2:943608
Available from: 2016-06-28 Created: 2016-06-21 Last updated: 2016-06-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Jaramillo, Fernando
By organisation
Department of Physical Geography
In the same journal
Functional Ecology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 4 hits
ReferencesLink to record
Permanent link

Direct link