Change search
ReferencesLink to record
Permanent link

Direct link
Using concurrent DNA tracer injections to infer glacial flow pathways
Show others and affiliations
Number of Authors: 7
2015 (English)In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 29, no 25, 5257-5274 p.Article in journal (Refereed) Published
Abstract [en]

Catchment hydrology has become replete with flow pathway characterizations obtained via combinations of physical hydrologic measurements (e.g. streamflow hydrographs) and natural tracer signals (e.g. stable water isotopes and geochemistry). In this study, we explored how our understanding of hydrologic flow pathways can be improved and expanded in both space and time by the simultaneous application of engineered synthetic DNA tracers. In this study, we compared the advective-dispersive transport properties and mass recovery rates of two types of synthetic DNA tracers, one consisting of synthetic DNA strands encapsulated into biodegradable microspheres and another consisting of `free' DNA, i.e. not encapsulated. The DNA tracers were also compared with a conservative fluorescent dye. All tracers were injected into a small (3.2-km(2)) valley glacier, Storglaciaren, in northern Sweden. Seven of the nine DNA tracers showed clear recovery during the sampling period and similar peak arrival times and dispersion coefficients as the conservative fluorescent dye. However, recovered DNA tracer mass ranged only from 1% to 66%, while recovered fluorescent dye mass was 99%. Resulting from the cold and opaque subglacial environment provided by the glacier, mass loss associated with microbial activity and photochemical degradation of the DNA is likely negligible, leaving sorption of DNA tracers onto suspended particles and loss of microtracer particles to sediment storage as probable explanations. Despite the difference in mass recovery, the advection and dispersion information derived from the DNA tracer breakthrough curves provided spatially explicit information that allowed inferring a theoretical model of the flow pathways that water takes through the glacier.

Place, publisher, year, edition, pages
2015. Vol. 29, no 25, 5257-5274 p.
Keyword [en]
synthetic DNA, tracer, tracer hydrology, glacier, flow pathways
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-126789DOI: 10.1002/hyp.10679ISI: 000368277500010OAI: diva2:943889
Available from: 2016-06-28 Created: 2016-02-15 Last updated: 2016-06-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lyon, Steve W.
By organisation
Department of Physical Geography
In the same journal
Hydrological Processes
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 2 hits
ReferencesLink to record
Permanent link

Direct link