Change search
ReferencesLink to record
Permanent link

Direct link
Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Number of Authors: 4
2016 (English)In: Archives of Toxicology, ISSN 0340-5761, E-ISSN 1432-0738, Vol. 90, no 5, 1117-1128 p.Article in journal (Refereed) Published
Abstract [en]

The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.

Place, publisher, year, edition, pages
2016. Vol. 90, no 5, 1117-1128 p.
Keyword [en]
Uncoupling protein 1, Brown adipose tissue mitochondria, Environmental pollution, Reactive oxygen species, Membrane potential, Mitochondrial permeabilization
National Category
Biochemistry and Molecular Biology Pharmacology and Toxicology
Identifiers
URN: urn:nbn:se:su:diva-131537DOI: 10.1007/s00204-015-1535-4ISI: 000374303400008PubMedID: 26041126OAI: oai:DiVA.org:su-131537DiVA: diva2:945537
Available from: 2016-07-01 Created: 2016-06-21 Last updated: 2016-07-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Shabalina, Irina G.Kalinovich, Anastasia V.Cannon, BarbaraNedergaard, Jan
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Archives of Toxicology
Biochemistry and Molecular BiologyPharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 40 hits
ReferencesLink to record
Permanent link

Direct link