Change search
ReferencesLink to record
Permanent link

Direct link
Azimuthal asymmetries in the debris disk around HD61005 A massive collision of planetesimals?
Show others and affiliations
Number of Authors: 33
2016 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 591, A108Article in journal (Refereed) Published
Abstract [en]

Context. Debris disks off er valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100 Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk. Aims. High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes. Methods. Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40 Myr-old solar-type star HD61005. We resolve the disk at unprecedented resolution both in the near-infrared (in scattered and polarized light) and at millimeter wavelengths. We perform a detailed modeling of these observations, including the spectral energy distribution. Results. Thanks to the new observations, we propose a solution for both the radial and azimuthal distribution of the dust grains in the debris disk. We find that the disk has a moderate eccentricity (e similar to 0.1) and that the dust density is two times larger at the pericenter compared to the apocenter. Conclusions. With no giant planets detected in our observations, we investigate alternative explanations besides planet-disk interactions to interpret the inferred disk morphology. We postulate that the morphology of the disk could be the consequence of a massive collision between similar to 1000 km-sized bodies at similar to 61 au. If this interpretation holds, it would put stringent constraints on the formation of massive planetesimals at large distances from the star.

Place, publisher, year, edition, pages
2016. Vol. 591, A108
Keyword [en]
circumstellar matter, zodiacal dust, techniques: high angular resolution
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-132539DOI: 10.1051/0004-6361/201628196ISI: 000379141300117OAI: oai:DiVA.org:su-132539DiVA: diva2:955282
Available from: 2016-08-25 Created: 2016-08-15 Last updated: 2016-08-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Janson, Markus
By organisation
Department of Astronomy
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 1 hits
ReferencesLink to record
Permanent link

Direct link