Change search
ReferencesLink to record
Permanent link

Direct link
Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Indian Institute of Tropical Meteorology, India.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 7
2016 (English)In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 178, 393-400 p.Article in journal (Refereed) Published
Abstract [en]

Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (+/- 0.85) mu g m(-3) with a daily variability between 2.4 and 5.64 mu g m(-3), however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM1.0)] were 29.1(+/- 16.2), 34.7 (+/- 19.9) and 43.7 (+/- 283) mu g m(-3), respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 mu g m(-3)) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be +78.3, +44.9, and +45.0 W m(-2) and +42.2, +35.4 and +34.3 W m(-2) during the months ofJune, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21,1.26 and 1.26; and 1.19, 0.99 and 0.96 K day(-1) for the month ofJune, July and August, respectively, with a mean of 1.57 and 1.05 K day(-1) which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by residential cooking using biofuels in India. Our study demonstrates the need for immediate, effective regulations and policies that mitigate the emission of BC particles from domestic cooking in rural areas of India.

Place, publisher, year, edition, pages
2016. Vol. 178, 393-400 p.
Keyword [en]
Black carbon, Residential cooking, Biofuels, Radiative forcing, Rural IGP, South Asia
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-132920DOI: 10.1016/j.atmosres.2016.04.008ISI: 000378360700034OAI: oai:DiVA.org:su-132920DiVA: diva2:957528
Available from: 2016-09-02 Created: 2016-08-26 Last updated: 2016-09-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Tunved, Peter
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Atmospheric research
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 1 hits
ReferencesLink to record
Permanent link

Direct link