Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface Partitioning in Organic-Inorganic Mixtures Contributes to the Size-Dependence of the Phase-State of Atmospheric Nanoparticles
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 102016 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 50, no 14, p. 7434-7442Article in journal (Refereed) Published
Abstract [en]

Atmospheric particulate matter is one of the main factors governing the Earth's radiative budget, but its exact effects on the global climate are still uncertain. Knowledge on the molecular-scale surface phenomena as well as interactions between atmospheric organic and inorganic compounds is necessary for understanding the role of airborne nanoparticles in the Earth system. In this work, surface composition of aqueous model systems containing succinic acid and sodium chloride or ammonium sulfate is determined using a novel approach combining X-ray photoelectron spectroscopy, surface tension measurements and thermodynamic modeling. It is shown that succinic acid molecules are accumulated in the surface, yielding a 10-fold surface concentration as compared with the bulk for saturated succinic acid solutions. Inorganic salts further enhance this enrichment due to competition for hydration in the bulk. The surface compositions for various mixtures are parametrized to yield generalizable results and used to explain changes in surface tension. The enhanced surface partitioning implies an increased maximum solubility of organic compounds in atmospheric nanoparticles. The results can explain observations of size-dependent phase-state of atmospheric nanoparticles, suggesting that these particles can display drastically different behavior than predicted by bulk properties only.

Place, publisher, year, edition, pages
2016. Vol. 50, no 14, p. 7434-7442
National Category
Earth and Related Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
URN: urn:nbn:se:su:diva-133389DOI: 10.1021/acs.est.6b00789ISI: 000380295700019PubMedID: 27326704OAI: oai:DiVA.org:su-133389DiVA, id: diva2:962974
Available from: 2016-09-07 Created: 2016-09-06 Last updated: 2018-02-12Bibliographically approved
In thesis
1. Investigating parameters governing liquid-phase cloud activation of atmospheric particles
Open this publication in new window or tab >>Investigating parameters governing liquid-phase cloud activation of atmospheric particles
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Aerosol-cloud interactions are one of the main sources of uncertainties in modeling and predicting the Earth’s climate. To overcome this uncertainty, we need to improve the understanding about the processes and parameters defining how aerosol particles turn into cloud condensation nuclei (CCN) or ice nuclei (IN) to produce cloud droplets or ice crystals. The focus of this dissertation is on liquid phase cloud droplets. The thesis investigates the effect of water solubility and surface tension on the CCN activity of atmospheric aerosol particles. These parameters are among the key properties defining how an aerosol particle can turn into a cloud droplet. The main goals of this thesis are to investigate 1) the CCN activity of aerosol particles containing both water soluble and insoluble substances and 2) the contribution of molecular-scale surface structure to the surface tension and CCN activity of atmospherically relevant aqueous mixtures.

In the first part of this thesis, the CCN activity of water-insoluble aerosol constituents coated by water-soluble or sparingly soluble species was investigated. The results showed that the CCN activity of the insoluble silica and black carbon particles, with sizes between 100 and 300 nm, increased with the amount of the coating on the insoluble cores and at thick enough coating approached the CCN activity of the soluble species. Moreover, controlled dry coating of the insoluble BC cores yielded a size-independent distribution of the coating material on the insoluble cores, which was not achieved by wet coating of the silica particles. The results also confirmed that by knowing the fraction of soluble material (coating thicknesses), the existing theories gave a reasonable estimate of the CCN activity for the mixed soluble-insoluble particles. Finally, the results highlight the need for including the impacts of co-emitted or later condensed compounds in estimates of the climate impacts of atmospheric insoluble aerosol species.

In the second part of the thesis, surface propensity of succinic acid, pure or mixed with soluble inorganic salts in the aqueous droplets, were quantified via molecular-level surface composition measurement by X-ray Photoelectron Spectroscopy (XPS). The XPS and molecular dynamic (MD) simulations of succinic acid aqueous solutions showed strong enrichment of the succinic acid at the surface of the liquid droplets compared to the bulk solution. This effect was more pronounced in the presence of the highly soluble inorganic salts like NaCl and (NH4)2SO4 in the system. The modeled surface tension of the pure organic or mixture of organic and inorganic substances, using surface enrichment factors derived from the XPS experiments were in good agreement with the experimental surface tension data. This demonstrates the high potential of XPS for direct measurements of the surface composition of atmospherically relevant aqueous mixtures. The results suggest that for modeling the phase-state and water content of the atmospheric particles, the contribution by the surface layer needs to be considered, because aqueous droplet can contain larger amounts of organic compounds than the bulk solubility limit of the solutions. However, the effect of the aqueous surface composition on the CCN activation of particles consisting of the studied mixtures was estimated to be very small.

The results presented in this thesis provide new insights into the relationship between aerosol particle composition and cloud condensation nuclei activity. However, the effect of more realistic complex mixtures will require more research. The results showed that for modeling semi-volatile species, the partitioning between the gas and condensed phase needs to be considered. In addition, along with the liquid-phase cloud activation, the ice nucleation ability of the particles made of soluble and insoluble species requires to be further investigated.

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2018. p. 50
Keywords
CCN activation, surface tension, coated aerosols, black carbon
National Category
Climate Research Meteorology and Atmospheric Sciences Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
urn:nbn:se:su:diva-152128 (URN)978-91-7797-105-4 (ISBN)978-91-7797-106-1 (ISBN)
Public defence
2018-03-15, De Geersalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2018-02-20 Created: 2018-01-26 Last updated: 2018-02-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Dalirian, MaryamWideqvist, UllaLowe, Samuel J.Riipinen, Ilona
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Science and Technology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf