Change search
ReferencesLink to record
Permanent link

Direct link
No insulating effect of obesity
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. University Medical Center Hamburg-Eppendorf, Germany.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Show others and affiliations
Number of Authors: 5
2016 (English)In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 311, no 1, e202-E213 p.Article in journal (Refereed) Published
Abstract [en]

The development of obesity may be aggravated if obesity itself insulates against heat loss and thus diminishes the amount of food burnt for body temperature control. This would be particularly important under normal laboratory conditions where mice experience a chronic cold stress (at approximate to 20 degrees C). We used Scholander plots (energy expenditure plotted against ambient temperature) to examine the insulation (thermal conductance) of mice, defined as the inverse of the slope of the Scholander curve at subthermoneutral temperatures. We verified the method by demonstrating that shaved mice possessed only half the insulation of non-shaved mice. We examined a series of obesity models [mice fed high-fat diets and kept at different temperatures, classical diet-induced obese mice, ob/ob mice, and obesity-prone (C57BL/6) vs. obesity-resistant (129S)mice]. We found that neither acclimation temperature nor any kind or degree of obesity affected the thermal insulation of the mice when analyzed at the whole mouse level or as energy expenditure per lean weight. Calculation per body weight erroneously implied increased insulation in obese mice. We conclude that, in contrast to what would be expected, obesity of any kind does not increase thermal insulation in mice, and therefore, it does not in itself aggravate the development of obesity. It may be discussed as to what degree of effect excess adipose tissue has on insulation in humans and especially whether significant metabolic effects are associated with insulation in humans.

Place, publisher, year, edition, pages
2016. Vol. 311, no 1, e202-E213 p.
Keyword [en]
obesity, insulation, ob/ob
National Category
Condensed Matter Physics Physiology
Identifiers
URN: urn:nbn:se:su:diva-133223DOI: 10.1152/ajpendo.00093.2016ISI: 000380372000016PubMedID: 27189935OAI: oai:DiVA.org:su-133223DiVA: diva2:970442
Available from: 2016-09-13 Created: 2016-09-05 Last updated: 2016-09-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Fischer, Alexander W.Csikasz, Robert I.von Essen, GabriellaCannon, BarbaraNedergaard, Jan
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
American Journal of Physiology. Endocrinology and Metabolism
Condensed Matter PhysicsPhysiology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 3 hits
ReferencesLink to record
Permanent link

Direct link