Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Universal algebraic structures on polyvector fields
Stockholm University, Faculty of Science, Department of Mathematics.
2014 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

The theory of operads is a conceptual framework that has become a kind of universal language, relating branches of topology and algebra. This thesis uses the operadic framework to study the derived algebraic properties of polyvector fields on manifolds.The thesis is divided into eight chapters. The first is an introduction to the thesis and the research field to which it belongs, while the second chapter surveys the basic mathematical results of the field.The third chapter is devoted to a novel construction of differential graded operads, generalizing an earlier construction due to Thomas Willwacher. The construction highlights and explains several categorical properties of differential graded algebras (of some kind) that come equipped with an action by a differential graded Lie algebra. In particular, the construction clarifies the deformation theory of such algebras and explains how such algebras can be twisted by Maurer-Cartan elements.The fourth chapter constructs an explicit strong homotopy deformation of polynomial polyvector fields on affine space, regarded as a two-colored noncommutative Gerstenhaber algebra. It also constructs an explicit strong homotopy quasi-isomorphism from this deformation to the canonical two-colored noncommmutative Gerstenhaber algebra of polydifferential operators on the affine space. This explicit construction generalizes Maxim Kontsevich's formality morphism.The main result of the fifth chapter is that the deformation of polyvector fields constructed in the fourth chapter is (generically) nontrivial and, in a sense, the unique such deformation. The proof is based on some cohomology computations involving Kontsevich's graph complex and related complexes. The chapter ends with an application of the results to properties of a derived version of the Duflo isomorphism.The sixth chapter develops a general mathematical framework for how and when an algebraic structure on the germs at the origin of a sheaf on Cartesian space can be "globalized" to a corresponding algebraic structure on the global sections over an arbitrary smooth manifold. The results are applied to the construction of the fourth chapter, and it is shown that the construction globalizes to polyvector fields and polydifferential operators on an arbitrary smooth manifold.The seventh chapter combines the relations to graph complexes, explained in chapter five, and the globalization theory of chapter six, to uncover a representation of the Grothendieck-Teichmüller group in terms of A-infinity morphisms between Poisson cohomology cochain complexes on a manifold.Chapter eight gives a simplified version of a construction of a family of Drinfel'd associators due to Carlo Rossi and Thomas Willwacher. Our simplified construction makes the connections to multiple zeta values more transparent--in particular, one obtains a fairly explicit family of evaluations on the algebra of formal multiple zeta values, and the chapter proves certain basic properties of this family of evaluations.

Place, publisher, year, edition, pages
Stockholm: Department of Mathematics, Stockholm University , 2014. , p. 178
National Category
Geometry
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-100775ISBN: 978-91-7447-864-8 (print)OAI: oai:DiVA.org:su-100775DiVA, id: diva2:696219
Public defence
2014-04-11, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2014-03-20 Created: 2014-02-13 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

almthesis(1172 kB)2034 downloads
File information
File name FULLTEXT02.pdfFile size 1172 kBChecksum SHA-512
0347cee4793cb6f834d9c0609a62ab81faf42d1a74e727ce093504a3d464310057a5430831c1a64a0a2210984a012dbc894b94e89846f8a278bc194b0016cbea
Type fulltextMimetype application/pdf

Authority records

Alm, Johan

Search in DiVA

By author/editor
Alm, Johan
By organisation
Department of Mathematics
Geometry

Search outside of DiVA

GoogleGoogle Scholar
Total: 2037 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 3148 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf