Change search
Refine search result
12 1 - 50 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Akselsson, Cecilia
    et al.
    Belyazid, Salim
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Stendahl, Johan
    Finlay, Roger
    Olsson, Bengt A.
    Erlandsson Lampa, Martin
    Wallander, Håkan
    Gustafsson, Jon Petter
    Bishop, Kevin
    Weathering rates in Swedish forest soils2019In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 16, no 22, p. 4429-4450Article in journal (Refereed)
    Abstract [en]

    Soil and water acidification was internationally recognised as a severe environmental problem in the late 1960s. The interest in establishing critical loads led to a peak in weathering research in the 1980s and 1990s, since base cation weathering is the long-term counterbalance to acidification pressure. Assessments of weathering rates and associated uncertainties have recently become an area of renewed research interest, this time due to demand for forest residues to provide renewable bioenergy. Increased demand for forest fuels increases the risk of depleting the soils of base cations produced in situ by weathering. This is the background to the research programme Quantifying Weathering Rates for Sustainable Forestry (QWARTS), which ran from 2012 to 2019. The programme involved research groups working at different scales, from laboratory experiments to modelling. The aims of this study were to (1) investigate the variation in published weathering rates of base cations from different approaches in Sweden, with consideration of the key uncertainties for each method; (2) assess the robustness of the results in relation to sustainable forestry; and (3) discuss the results in relation to new insights from the QWARTS programme and propose ways to further reduce uncertainties. In the study we found that the variation in estimated weathering rates at single-site level was large, but still most sites could be placed reliably in broader classes of weathering rates. At the regional level, the results from the different approaches were in general agreement. Comparisons with base cation losses after stem-only and whole-tree harvesting showed sites where whole-tree harvesting was clearly not sustainable and other sites where variation in weathering rates from different approaches obscured the overall balance. Clear imbalances appeared mainly after whole-tree harvesting in spruce forests in southern and central Sweden. Based on the research findings in the QWARTS programme, it was concluded that the PROFILE/ForSAFE family of models provides the most important fundamental understanding of the contribution of weathering to long-term availability of base cations to support forest growth. However, these approaches should be continually assessed against other approaches. Uncertainties in the model approaches can be further reduced, mainly by finding ways to reduce uncertainties in input data on soil texture and associated hydrological parameters but also by developing the models, e.g. to better represent biological feedbacks under the influence of climate change.

  • 2. Almén, Anna-Karin
    et al.
    Vehmaa, Anu
    Brutemark, Andreas
    Bach, Lennart
    Lischka, Silke
    Stuhr, Annegret
    Furuhagen, Sara
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Paul, Allanah
    Bermudez, J. Rafael
    Riebesell, Ulf
    Engström-Öst, Jonna
    Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 4, p. 1037-1048Article in journal (Refereed)
    Abstract [en]

    Ocean acidification is caused by increasing amounts of carbon dioxide dissolving in the oceans leading to lower seawater pH. We studied the effects of lowered pH on the calanoid copepod Eurytemora affinis during a mesocosm experiment conducted in a coastal area of the Baltic Sea. We measured copepod reproductive success as a function of pH, chlorophyll a concentration, diatom and dinoflagellate biomass, carbon to nitrogen (C : N) ratio of suspended particulate organic matter, as well as copepod fatty acid composition. The laboratory-based experiment was repeated four times during 4 consecutive weeks, with water and copepods sampled from pelagic mesocosms enriched with different CO2 concentrations. In addition, oxygen radical absorbance capacity (ORAC) of animals from the mesocosms was measured weekly to test whether the copepod's defence against oxidative stress was affected by pH. We found no effect of pH on offspring production. Phytoplankton biomass, as indicated by chlorophyll a concentration and dinoflagellate biomass, had a positive effect. The concentration of polyunsaturated fatty acids in the females was reflected in the eggs and had a positive effect on offspring production, whereas monounsaturated fatty acids of the females were reflected in their eggs but had no significant effect. ORAC was not affected by pH. From these experiments we conclude that E. affinis seems robust against direct exposure to ocean acidification on a physiological level, for the variables covered in the study. E. affinis may not have faced acute pH stress in the treatments as the species naturally face large pH fluctuations.

  • 3. Anderson, Leif G.
    et al.
    Ek, Jörgen
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
    Ericson, Ylva
    Humborg, Christoph
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Semiletov, Igor
    Sundbom, Marcus
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
    Ulfsbo, Adam
    Export of calcium carbonate corrosive waters from the East Siberian Sea2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 7, p. 1811-1823Article in journal (Refereed)
    Abstract [en]

    The Siberian shelf seas are areas of extensive biogeochemical transformation of organic matter, both of marine and terrestrial origin. This in combination with brine production from sea ice formation results in a cold bottom water of relative high salinity and partial pressure of carbon dioxide (pCO(2)). Data from the SWERUS-C3 expedition compiled on the icebreaker Oden in July to September 2014 show the distribution of such waters at the outer shelf, as well as their export into the deep central Arctic basins. Very high pCO(2) water, up to similar to 1000 mu atm, was observed associated with high nutrients and low oxygen concentrations. Consequently, this water had low saturation state with respect to calcium carbonate down to less than 0.8 for calcite and 0.5 for aragonite. Waters undersaturated in aragonite were also observed in the surface in waters at equilibrium with atmospheric CO2; however, at these conditions the cause of undersaturation was low salinity from river runoff and/or sea ice melt. The calcium carbonate corrosive water was observed all along the continental margin and well out into the deep Makarov and Canada basins at a depth from about 50 m depth in the west to about 150 m in the east. These waters of low aragonite saturation state are traced in historic data to the Canada Basin and in the waters flowing out of the Arctic Ocean north of Greenland and in the western Fram Strait, thus potentially impacting the marine life in the North Atlantic Ocean.

  • 4. Bartsch, Annett
    et al.
    Widhalm, Barbara
    Kuhry, Peter
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Hugelius, Gustaf
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Palmtag, Juri
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Siewert, Matthias Benjamin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra?2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 19, p. 5453-5470Article in journal (Refereed)
    Abstract [en]

    A new approach for the estimation of soil organic carbon (SOC) pools north of the tree line has been developed based on synthetic aperture radar (SAR; ENVISAT Advanced SAR Global Monitoring mode) data. SOC values are directly determined from backscatter values instead of upscaling using land cover or soil classes. The multi-mode capability of SAR allows application across scales. It can be shown that measurements in C band under frozen conditions represent vegetation and surface structure properties which relate to soil properties, specifically SOC. It is estimated that at least 29 Pg C is stored in the upper 30 cm of soils north of the tree line. This is approximately 25% less than stocks derived from the soil-map-based Northern Circumpolar Soil Carbon Database (NCSCD). The total stored carbon is underestimated since the established empirical relationship is not valid for peatlands or strongly cryoturbated soils. The approach does, however, provide the first spatially consistent account of soil organic carbon across the Arctic. Furthermore, it could be shown that values obtained from 1 km resolution SAR correspond to accounts based on a high spatial resolution (2 m) land cover map over a study area of about 7 x 7 km in NE Siberia. The approach can be also potentially transferred to medium-resolution C-band SAR data such as ENVISAT ASAR Wide Swath with similar to 120m resolution but it is in general limited to regions without woody vegetation. Global Monitoring-mode-derived SOC increases with unfrozen period length. This indicates the importance of this parameter for modelling of the spatial distribution of soil organic carbon storage.

  • 5. Bermudez, Rafael
    et al.
    Winder, Monika
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Stuhr, Annegret
    Almen, Anna-Karin
    Engström-Öst, Jonna
    Riebesell, Ulf
    Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 24, p. 6625-6635Article in journal (Refereed)
    Abstract [en]

    Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of offshore mesocosms and subjected to a CO2 gradient ranging from natural concentrations (similar to 347 mu atm fCO(2)) up to values projected for the year 2100 (similar to 1333 mu atm fCO(2)). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO(2). Although this coastal plankton community was tolerant of high pCO(2) levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms.

  • 6. Bischoff, Juliane
    et al.
    Sparkes, Robert B.
    Selver, Ayca Dogrul
    Spencer, Robert G. M.
    Gustafsson, Örjan
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Semiletov, Igor P.
    Dudarev, Oleg V.
    Wagner, Dirk
    Rivkina, Elizaveta
    van Dongen, Bart E.
    Talbot, Helen M.
    Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 17, p. 4899-4914Article in journal (Refereed)
    Abstract [en]

    The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk delta C-13 measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R'(soil) ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R'(soil) displays a negative linear correlation with bulk delta C-13 measurements (r(2) = -0.73, p = < 0 : 001). When compared to the GDGT-based OC proxy, the branched and isoprenoid tetraether (BIT) index, a decoupled (non-linear) behaviour on the shelf was observed, particularly in the Buor-Khaya Bay, where the R'(soil) shows limited variation, whereas the BIT index shows a rapid decline moving away from the Lena River outflow channels. This reflects a balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion, whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R'(soil) of 0.5 for the Lena Delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further east showed higher values (0.6-0.85). Although R'(soil) correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete, with variations between the different East Siberian Arctic regions potentially reflecting differences in environmental conditions (e.g. temperature, pH), but other physiological controls on microbial bacteriohopanepolyol (BHP) production under psychrophilic conditions are as yet unknown.

  • 7.
    Bonaglia, Stefano
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Hylén, Astrid
    Rattray, Jayne E.
    Kononets, Mikhail Y.
    Ekeroth, Nils
    Roos, Per
    Thamdrup, Bo
    Brüchert, Volker
    Hall, Per O. J.
    The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 2, p. 285-300Article in journal (Refereed)
    Abstract [en]

    Over the last decades, the impact of human activities on the global nitrogen (N) cycle has drastically increased. Consequently, benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while in oligotrophic systems its understanding is still scarce. Here we report on benthic solute fluxes and on rates of denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) studied by in situ incubations with benthic chamber landers during two cruises to the Gulf of Bothnia (GOB), a cold, oligotrophic basin located in the northern part of the Baltic Sea. Rates of N burial were also inferred to investigate the fate of fixed N in these sediments. Most of the total dissolved fixed nitrogen (TDN) diffusing to the water column was composed of organic N. Average rates of dinitrogen (N-2) production by denitrification and anammox (range: 53-360 mu mol Nm(-2) day(-1)) were comparable to those from Arctic and subarctic sediments worldwide (range: 34-344 mu mol Nm(-2) day(-1)). Anammox accounted for 18-26% of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore water suggested that denitrification and DNRA were driven by organic matter oxidation rather than chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one-third to the TDN efflux and accounted, on average, for 45% of total nitrate reduction. At the offshore stations, the proportion of DNRA in relation to denitrification was lower (0-16% of total nitrate reduction). Median value and range of benthic DNRA rates from the GOB were comparable to those from the southern and central eutrophic Baltic Sea and other temperate estuaries and coasts in Europe. Therefore, our results contrast with the view that DNRA is negligible in cold and well-oxygenated sediments with low organic carbon loading. However, the mechanisms behind the variability in DNRA rates between our sites were not resolved. The GOB sediments were a major source (237 kt yr(-1), which corresponds to 184% of the external N load) of fixed N to the water column through recycling mechanisms. To our knowledge, our study is the first to document the simultaneous contribution of denitrification, DNRA, anammox, and TDN recycling combined with in situ measurements.

  • 8. Bonnet, Sophie
    et al.
    Caffin, Mathieu
    Berthelot, Hugo
    Grosso, Olivier
    Benavides, Mar
    Helias-Nunige, Sandra
    Guieu, Cecile
    Stenegren, Marcus
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Foster, Rachel Ann
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N-2 fixation (OUTPACE cruise)2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 13, p. 4215-4232Article in journal (Refereed)
    Abstract [en]

    Here we report N-2 fixation rates from a similar to 4000 km transect in the western and central tropical South Pacific, a particularly undersampled region in the world ocean. Water samples were collected in the euphotic layer along a west to east transect from 160 degrees E to 160 degrees W that covered contrasting trophic regimes, from oligotrophy in the Melanesian archipelago (MA) waters to ultraoligotrophy in the South Pacific Gyre (GY) waters. N-2 fixation was detected at all 17 sampled stations with an average depth-integrated rate of 631 +/- 286 mu mol Nm(-2) d(-1) (range 196-1153 mu mol Nm(-2) d(-1)) in MA waters and of 85 +/- 79 mu mol Nm(-2) d(-1) (range 18-172 mu mol Nm(-2) d(-1)) in GY waters. Two cyanobacteria, the larger colonial filamentous Trichodesmium and the smaller UCYN-B, dominated the enumerated diazotroph community (>80 %) and gene expression of the nifH gene (cDNA > 10(5) nifH copies L-1) in MA waters. Single-cell isotopic analyses performed by nanoscale secondary ion mass spectrometry (nanoSIMS) at selected stations revealed that Trichodesmium was always the major contributor to N-2 fixation in MA waters, accounting for 47.1-83.8% of bulk N-2 fixation. The most plausible environmental factors explaining such exceptionally high rates of N-2 fixation in MA waters are discussed in detail, emphasizing the role of macro- and micro-nutrient (e.g., iron) availability, seawater temperature and currents.

  • 9.
    Borg, Hans
    et al.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Sundbom, Marcus
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Long-term trends of water chemistry in mountain streams in Sweden - slow recovery from acidification2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 1, p. 173-184Article in journal (Refereed)
    Abstract [en]

    The water chemistry of streams and precipitation in the province of Jamtland, northern Sweden has been monitored since the 1980s to study long-term trends, occurrence of acid episodes, and effects of liming. The acidity in precipitation increased in the 1970s, followed by a loss of acid neutralizing capacity (ANC) and low pH in the streams. Sulfur deposition began to decrease in the 1980s, until approximately 2000, after which the decrease levelled out. Stream water sulfate concentration followed the precipitation trend but decreased more slowly and since the late 1990s a subtle increase was observed. Sulfate concentrations in the snow typically have been higher than or equal to the stream sulfate levels. However, during the period of rapid deposition decrease and also since 2005 stream sulfate has sometimes exceeded snow sulfate, indicating desorption of stored soil sulfate, possibly because of climate-related changes in runoff routes through the soil profiles, following shorter periods of frost. From 1982 to 2000, total organic carbon (TOC) increased by approximately 0.1 mg L-1 yr(-1). The mean trends in sulfate and TOC from approximately 1990 until today were generally opposite. Acidic episodes with pH 4.0 at flow peaks occurred frequently in the unlimed streams, despite relatively well-buffered waters at baseflow. To evaluate the main causes for the loss of ANC during episodes, the changes in major ion concentrations during high flow episodes were evaluated. The most important factors contributing to ANC loss were dilution of base cations (Na+, K+, Ca2+, Mg2+), enrichment of organic anions and enrichment of sulfate. Wetland liming started in 1985 after which the earlier observed extreme peak values of iron, manganese and aluminium, did not reoccur. The studied area is remote from emission sources in Europe, but the critical load of acidity is still exceeded. The long-term recovery observed in the unlimed streams is thus slow, and severe acidic episodes still occur.

  • 10. Bouton, Anthony
    et al.
    Vennin, Emmanuelle
    Boulle, Julien
    Pace, Aurelie
    Bourillot, Raphael
    Thomazo, Christophe
    Brayard, Arnaud
    Desaubliaux, Guy
    Goslar, Tomasz
    Yokoyama, Yusuke
    Dupraz, Christophe
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Visscher, Pieter T.
    Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 19, p. 5511-5526Article in journal (Refereed)
    Abstract [en]

    The Great Salt Lake is a modern hypersaline lake, in which an extended modern and ancient microbial sedimentary system has developed. Detailed mapping based on aerial images and field observations can be used to identify non-random distribution patterns of microbial deposits, such as paleoshorelines associated with extensive polygons or fault-parallel alignments. Although it has been inferred that climatic changes controlling the lake level fluctuations explain the distribution of paleoshorelines and polygons, straight microbial deposit alignments may underline a normal fault system parallel to the Wasatch Front. This study is based on observations over a decimetre to kilometre spatial range, resulting in an integrated conceptual model for the controls on the distribution of the microbial deposits. The morphology, size and distribution of these deposits result mainly from environmental changes (i.e. seasonal to long-term water level fluctuations, particular geomorphological heritage, fault-induced processes, groundwater seepage) and have the potential to bring further insights into the reconstruction of paleoenvironments and paleoclimatic changes through time. New ra-diocarbon ages obtained on each microbial macrofabric described in this study improve the chronological framework and question the lake level variations that are commonly assumed.

  • 11.
    Breitbarth, E
    et al.
    Univ Gothenburg, Dept Chem Analyt & Marine Chem.
    Gelting, J
    Lulea Univ Technol, Div Appl Geol.
    Walve, Jakob
    Stockholm University, Faculty of Science, Department of Systems Ecology.
    Hoffmann, LJ
    Univ Gothenburg, Dept Chem Analyt & Marine Chem.
    Turner, DR
    Univ Gothenburg, Dept Chem Analyt & Marine Chem.
    Hassellov, M
    Univ Gothenburg, Dept Chem Analyt & Marine Chem.
    Ingri, J
    Lulea Univ Technol, Div Appl Geol.
    Dissolved iron (II) in the Baltic Sea surface water and implications for cyanobacterial bloom development2009In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 6, no 11, p. 2397-2420Article in journal (Refereed)
    Abstract [en]

    Iron chemistry measurements were conducted during summer 2007 at two distinct locations in the Baltic Sea (Gotland Deep and Landsort Deep) to evaluate the role of iron for cyanobacterial bloom development in these estuarine waters. Depth profiles of Fe(II) were measured by chemiluminescent flow injection analysis (CL-FIA). Up to 0.9 nmol Fe(II) L-1 were detected in light penetrated surface waters, which constitutes up to 20% to the dissolved Fe pool. This bioavailable iron source is a major contributor to the Fe requirements of Baltic Sea phytoplankton and apparently plays a major role for cyanobacterial bloom development during our study. Measured Fe(II) half life times in oxygenated water exceed predicted values and indicate organic Fe(II) complexation. Potential sources for Fe(II) ligands, including rainwater, are discussed. Fe(II) concentrations of up to 1.44 nmol L-1 were detected at water depths below the euphotic zone, but above the oxic anoxic interface. Mixed layer depths after strong wind events are not deep enough in summer time to penetrate the oxic-anoxic boundary layer. However, Fe(II) from anoxic bottom water may enter the sub-oxic zone via diapycnal mixing and diffusion.

  • 12.
    Bröder, Lisa
    et al.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Tesi, Tommaso
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Institute of Marine Sciences – National Research Council, Italy.
    Salvadó, Joan A.
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Semiletov, Igor P.
    Dudarev, Oleg V.
    Gustafsson, Örjan
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 17, p. 5003-5019Article in journal (Refereed)
    Abstract [en]

    Ongoing global warming in high latitudes may cause an increasing supply of permafrost-derived organic carbon through both river discharge and coastal erosion to the Arctic shelves. Mobilized permafrost carbon can be either buried in sediments, transported to the deep sea or degraded to CO2 and outgassed, potentially constituting a positive feedback to climate change. This study aims to assess the fate of terrigenous organic carbon (TerrOC) in the Arctic marine environment by exploring how it changes in concentration, composition and degradation status across the wide Laptev Sea shelf. We analyzed a suite of terrestrial biomarkers as well as source-diagnostic bulk carbon isotopes (delta C-13, Delta C-14) in surface sediments from a Laptev Sea transect spanning more than 800 km from the Lena River mouth (< 10m water depth) across the shelf to the slope and rise (2000-3000m water depth). These data provide a broad view on different TerrOC pools and their behavior during cross-shelf transport. The concentrations of lignin phenols, cutin acids and high-molecular-weight (HMW) wax lipids (tracers of vascular plants) decrease by 89-99% along the transect. Molecular-based degradation proxies for TerrOC (e.g., the carbon preference index of HMW lipids, the HMW acids / alkanes ratio and the acid / aldehyde ratio of lignin phenols) display a trend to more degraded TerrOC with increasing distance from the coast. We infer that the degree of degradation of permafrost-derived TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport. Future work should therefore seek to constrain cross-shelf transport times in order to compute a TerrOC degradation rate and thereby help to quantify potential carbon-climate feedbacks.

  • 13.
    Brüchert, Volker
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Bröder, Lisa
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Sawicka, Joanna E.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Tesi, Tommaso
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. nstitute of Marine Sciences, National Research Council, Italy.
    Joye, Samantha P.
    Sun, Xiaole
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
    Semiletov, Igor P.
    Samarkin, Vladimir A.
    Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 2, p. 471-490Article in journal (Refereed)
    Abstract [en]

    The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling, intact sediment core incubations, 35 S-sulfate tracer experiments, porewater dissolved inorganic carbon (DIC), δ13 CDIC, and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope, and allowed us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 20 to 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 82% of the depthintegrated carbon mineralization. Oxygen uptake rates and 35 S-sulfate reduction rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC/NH4 + ratios in porewaters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end member calculations, the terrestrial organic carbon contribution varied between 32% and 36%, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using  isotope end member apportionment over the outer shelf of the Laptev and East Siberian Sea suggests that about 16 Tg C per year are respired in the outer shelf sea floor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C per year are degraded by anaerobic processes, with a terrestrial organic carbon contribution ranging between 0.3 and 0.5 Tg per year.

  • 14. Buendía, Corina
    et al.
    Kleidon, Axel
    Manzoni, Stefano
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Reu, Björn
    Porporato, Amilcare
    Evaluating the effect of nutrient redistribution by animals on the phosphorus cycle of lowland Amazonia2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 1, p. 279-295Article in journal (Refereed)
    Abstract [en]

    Phosphorus (P) availability decreases with soil age and potentially limits the productivity of ecosystems growing on old and weathered soils. Despite growing on ancient soils, ecosystems of lowland Amazonia are highly productive and are among the most biodiverse on Earth. P eroded and weathered in the Andes is transported by the rivers and deposited in floodplains of the lowland Amazon basin creating hotspots of P fertility. We hypothesize that animals feeding on vegetation and detritus in these hotspots may redistribute P to P-depleted areas, thus contributing to dissipate the P gradient across the landscape. Using a mathematical model, we show that animal-driven spatial redistribution of P from rivers to land and from seasonally flooded to terra firme (upland) ecosystems may sustain the P cycle of Amazonian lowlands. Our results show how P imported to land by terrestrial piscivores in combination with spatial redistribution of herbivores and detritivores can significantly enhance the P content in terra firme ecosystems, thereby highlighting the importance of food webs for the biogeochemical cycling of Amazonia.

  • 15.
    Bäckstrand, Kristina
    et al.
    Stockholm University, Faculty of Science, Department of Geology and Geochemistry.
    Crill, Patrick, M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Jackowicz-Korczyński, Marcin
    Mastepanov, Mikhail
    Christensen, Torben, R.
    Bastviken, David
    Annual carbon gas budget for a subarctic peatland, northern Sweden2010In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 7, no 1, p. 95-108Article in journal (Refereed)
    Abstract [en]

    Temperatures in the Arctic regions are rising, thawing permafrost and exposing previously stable soil organic carbon (OC) to decomposition. This can result in northern latitude soils, which have accumulated large amounts of OC potentially shifting from atmospheric C sinks to C sources with positive feedback on climate warming. In this paper, we estimate the annual net C gas balance (NCB) of the subarctic mire Stordalen, based on automatic chamber measurements of CO2 and total hydrocarbon (THC; CH4 and NMVOCs) exchange. We studied the dominant vegetation communities with different moisture and permafrost characteristics; a dry Palsa underlain by permafrost, an intermediate thaw site with Sphagnum spp. and a wet site with Eriophorum spp. where the soil thaws completely. Whole year accumulated fluxes of CO2 were estimated to 29.7, −35.3 and −34.9 gC m−2 respectively for the Palsa, Sphagnum and Eriophorum sites (positive flux indicates an addition of C to the atmospheric pool). The corresponding annual THC emissions were 0.5, 6.2 and 31.8 gC m−2 for the same sites. Therefore, the NCB for each of the sites was 30.2, −29.1 and −3.1 gC m−2 respectively for the Palsa, Sphagnum and Eriophorum site. On average, the whole mire was a CO2 sink of 2.6 gC m−2 and a THC source of 6.4 gC m−2 over a year. Consequently, the mire was a net source of C to the atmosphere by 3.9 gC m−2 (based on area weighted estimates for each of the three plant communities). Early and late snow season efflux of CO2 and THC emphasize the importance of winter measurements for complete annual C budgets. Decadal vegetation changes at Stordalen indicate that both the productivity and the THC emissions increased between 1970 and 2000. Considering the GWP100 of CH4, the net radiative forcing on climate increased 21% over the same time. In conclusion, reduced C compounds in these environments have high importance for both the annual C balance and climate.

  • 16. Caffin, Mathieu
    et al.
    Moutin, Thierry
    Foster, Rachel Ann
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Bouruet-Aubertot, Pascale
    Doglioli, Andrea Michelangelo
    Berthelot, Hugo
    Guieu, Cecile
    Grosso, Olivier
    Helias-Nunige, Sandra
    Leblond, Nathalie
    Gimenez, Audrey
    Petrenko, Anne Alexandra
    de Verneil, Alain
    Bonnet, Sophie
    N-2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 8, p. 2565-2585Article in journal (Refereed)
    Abstract [en]

    We performed nitrogen (N) budgets in the photic layer of three contrasting stations representing different trophic conditions in the western tropical South Pacific (WTSP) Ocean during austral summer conditions (FebruaryMarch 2015). Using a Lagrangian strategy, we sampled the same water mass for the entire duration of each long-duration (5 days) station, allowing us to consider only vertical exchanges for the budgets. We quantified all major vertical N fluxes both entering (N-2 fixation, nitrate turbulent diffusion, atmospheric deposition) and leaving the photic layer (particulate N export). The three stations were characterized by a strong nitracline and contrasted deep chlorophyll maximum depths, which were lower in the oligotrophic Melanesian archipelago (MA, stations LD A and LD B) than in the ultra-oligotrophic waters of the South Pacific Gyre (SPG, station LD C). N-2 fixation rates were extremely high at both LD A (593 +/- 51 mu mol N m(-2) d(-1)) and LD B (706 +/- 302 mu mol N m(-2)d(-1)), and the diazotroph community was dominated by Trichodesmium. N-2 fixation rates were lower (59 +/- 16 mu mol N m(-2) d(-1)) at LD C, and the diazotroph community was dominated by unicellular N-2-fixing cyanobacteria (UCYN). At all stations, N-2 fixation was the major source of new N (> 90 %) before atmospheric deposition and upward nitrate fluxes induced by turbulence. N-2 fixation contributed circa 1318 % of primary production in the MA region and 3 in the SPG water and sustained nearly all new primary production at all stations. The e ratio (e ratio articulate carbon export / primary production) was maximum at LD A (9.7 ) and was higher than the e ratio in most studied oligotrophic regions (< 5), indicating a high efficiency of the WTSP to export carbon relative to primary production. The direct export of diazotrophs assessed by qPCR of the nifH gene in sediment traps represented up to 30.6 of the PC export at LD A, while their contribution was 5 and < 0.1 % at LD B and LD C, respectively. At the three studied stations, the sum of all N input to the photic layer exceeded the N output through organic matter export. This disequilibrium leading to N accumulation in the upper layer appears as a characteristic of the WTSP during the summer season.

  • 17. Castro-Morales, Karel
    et al.
    Kleinen, Thomas
    Kaiser, Sonja
    Zaehle, Sönke
    Kittler, Fanny
    Kwon, Min Jung
    Beer, Christian
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Göckede, Mathias
    Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 9, p. 2691-2722Article in journal (Refereed)
    Abstract [en]

    Wetlands of northern high latitudes are ecosystems highly vulnerable to climate change. Some degradation effects include soil hydrologic changes due to permafrost thaw, formation of deeper active layers, and rising topsoil temperatures that accelerate the degradation of permafrost carbon and increase in CO2 and CH4 emissions. In this work we present 2 years of modeled year-round CH4 emissions into the atmosphere from a Northeast Siberian region in the Russian Far East. We use a revisited version of the process-based JSBACH-methane model that includes four CH4 transport pathways: plant-mediated transport, ebullition and molecular diffusion in the presence or absence of snow. The gas is emitted through wetlands represented by grid cell inundated areas simulated with a TOPMODEL approach. The magnitude of the summertime modeled CH4 emissions is comparable to ground-based CH4 fluxes measured with the eddy covariance technique and flux chambers in the same area of study, whereas wintertime modeled values are underestimated by 1 order of magnitude. In an annual balance, the most important mechanism for transport of methane into the atmosphere is through plants (61 %). This is followed by ebullition (similar to 35 %), while summertime molecular diffusion is negligible (0.02 %) compared to the diffusion through the snow during winter (similar to 4 %). We investigate the relationship between temporal changes in the CH4 fluxes, soil temperature, and soil moisture content. Our results highlight the heterogeneity in CH4 emissions at landscape scale and suggest that further improvements to the representation of large-scale hydrological conditions in the model will facilitate a more process-oriented land surface scheme and better simulate CH4 emissions under climate change. This is especially necessary at regional scales in Arctic ecosystems influenced by permafrost thaw.

  • 18. Chadburn, Sarah E.
    et al.
    Krinner, Gerhard
    Porada, Philipp
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Bartsch, Annett
    Beer, Christian
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Belelli Marchesini, Luca
    Boike, Julia
    Ekici, Altug
    Elberling, Bo
    Friborg, Thomas
    Hugelius, Gustaf
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Johansson, Margareta
    Kuhry, Peter
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kutzbach, Lars
    Langer, Moritz
    Lund, Magnus
    Parmentier, Frans-Jan W.
    Peng, Shushi
    Van Huissteden, Ko
    Wang, Tao
    Westermann, Sebastian
    Zhu, Dan
    Burke, Eleanor J.
    Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 22, p. 5143-5169Article in journal (Refereed)
    Abstract [en]

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.

  • 19. Charkin, A. N.
    et al.
    Dudarev, O. V.
    Semiletov, I. P.
    Kruhmalev, A. V.
    Vonk, J. E.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Sanchez-Garcia, L.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Karlsson, Emma
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Gustafsson, Örjan
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, no 9, p. 2581-2594Article in journal (Refereed)
    Abstract [en]

    Climate warming is amplified in the land-sea system of the East Siberian Arctic, which also holds large pools of vulnerable carbon in permafrost. This coastal area is strongly influenced by sediment and carbon transport from both its large rivers and extensive erosion of Pleistocene permafrost along its coastline. This study is investigating the coastal fate of the sediment and organic carbon delivered to the Buor-Khaya Gulf, which is the first recipient of the overwhelming fluvial discharge from the Lena River and is additionally receiving large input from extensive erosion of the coastal ice-complex (permafrost a. k.a. Yedoma; loess soil with high organic carbon content). Both water column suspended particulate matter (SPM) and surface sediments were sampled at about 250 oceanographic stations in the Gulf in this multi-year effort, including one winter campaign, and analyzed for the distribution and sorting of sediment size, organic carbon content, and stable carbon isotope signals. The composition of the surface sediment suggests an overwhelmingly terrestrial contribution from both river and coastal erosion. The objective of this paper is to improve our understanding of the seasonal (i.e., winter vs summer) and interannual variability of these coastal sedimentation processes and the dynamics of organic carbon (OC) distribution in both the water column SPM and the surface sediments of the Buor-Khaya Gulf. Based on data collected during several years in the period 2000-2008, two different sedimentation regimes were revealed for the Buor-Khaya Gulf, the relative importance of each at a given time depend on hydrometeorological conditions, the Lena River water discharge and sea-ice regime: Type 1 erosion-accumulation and Type 2 accumulation. The Type 1 erosion-accumulation sedimentation regime is typical (2000-2006) for the ice-free period of the year (here considered in detail for August 2005). Under such conditions terrigenous sources of SPM and particulate organic carbon (POC) stem predominantly from river discharge, thermal erosion of coastal ice-complex and remobilized bottom sediments. The Type 2 accumulation sedimentation regime develops under ice-covered conditions, and only occasionally during the ice-free period (August 2008). In Type 2 winter, combined terrigenous and marine-biogenic SPM and POC sources are dominating due to relatively low overall terrigenous input (April 2007). In Type 2 summer, river alluvium becomes the major SPM and POC source (August 2008). The water column SPM and POC loadings vary by more than a factor of two between the two regimes. This study underscores the necessity of multi-year investigations to better understand the functioning of the primary recipient of terrestrially expulsed matter in the East Siberian Arctic.

  • 20. Charrieau, Laurie M.
    et al.
    Ljung, Karl
    Schenk, Frederik
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Daewel, Ute
    Kritzberg, Emma
    Filipsson, Helena L.
    Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance2019In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 16, no 19, p. 3835-3852Article in journal (Refereed)
    Abstract [en]

    The Öresund (the Sound), which is a part of the Danish straits, is linking the marine North Sea and the brackish Baltic Sea. It is a transition zone where ecosystems are subjected to large gradients in terms of salinity, temperature, carbonate chemistry, and dissolved oxygen concentration. In addition to the highly variable environmental conditions, the area is responding to anthropogenic disturbances in, e.g., nutrient loading, temperature, and pH. We have reconstructed environmental changes in the Öresund during the last ca. 200 years, and especially dissolved oxygen concentration, salinity, organic matter content, and pollution levels, using benthic foraminifera and sediment geochemistry. Five zones with characteristic foraminiferal assemblages were identified, each reflecting the environmental conditions for the respective period. The largest changes occurred around 1950, when the foraminiferal assemblage shifted from a low diversity fauna dominated by the species Stainforthia fusiformis to higher diversity and abundance and dominance of the Elphidium species. Concurrently, the grainsize distribution shifted from clayey to sandier sediment. To explore the causes of the environmental changes, we used time series of reconstructed wind conditions coupled with large-scale climate variations as recorded by the North Atlantic Oscillation (NAO) index as well as the ECOSMO II model of currents in the Öresund area. The results indicate increased changes in the water circulation towards stronger currents in the area after the 1950s. The foraminiferal fauna responded quickly (<10 years) to the environmental changes. Notably, when the wind conditions, and thereby the current system, returned in the 1980s to the previous pattern, the foraminiferal assemblage did not rebound. Instead, the foraminiferal faunas displayed a new equilibrium state.

  • 21. Clymans, W.
    et al.
    Barao, L.
    Van der Putten, N.
    Wastegård, Sefan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Gisladottir, G.
    Björck, S.
    Moine, B.
    Struyf, E.
    Conley, D. J.
    The contribution of tephra constituents during biogenic silica determination: implications for soil and palaeoecological studies2015In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 12, no 12, p. 3789-3804Article in journal (Refereed)
    Abstract [en]

    Biogenic silica (BSi) is used as a proxy by soil scientists to identify biological effects on the Si cycle and by palaeoecologists to study environmental changes. Alkaline extractions are typically used to measure BSi in both terrestrial and aquatic environments. The dissolution properties of volcanic glass in tephra deposits and their nanocrystalline weathering products are hypothesized to overlap those of BSi; however, data to support this behaviour are lacking. The potential that Si-bearing fractions dissolve in alkaline media (Si-Alk) that do not necessarily correspond to BSi brings the applicability of BSi as a proxy into question. Here, analysis of 15 samples reported as tephra-containing allows us to reject the hypothesis that tephra constituents produce an identical dissolution signal to that of BSi during alkaline extraction. We found that dissolution of volcanic glass shards is incomplete during alkaline dissolution. Simultaneous measurement of Al and Si used here during alkaline dissolution provides an important parameter to enable us to separate glass shard dissolution from dissolution of BSi and other Si-bearing fractions. The contribution from volcanic glass shards (between 0.2 and 4 wt % SiO2), the main constituent of distal tephra, during alkaline dissolution can be substantial depending on the total Si-Alk. Hence, soils and lake sediments with low BSi concentrations are highly sensitive to the additional dissolution from tephra constituents and its weathering products. We advise evaluation of the potential for volcanic or other non-biogenic contributions for all types of studies using BSi as an environmental proxy.

  • 22. Conrad, Sarah
    et al.
    Ingri, Johan
    Gelting, Johan
    Nordblad, Fredrik
    Engström, Emma
    Rodushkin, Ilia
    Andersson, Per S.
    Porcelli, Don
    Gustafsson, Örjan
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Semiletov, Igor
    Öhlander, Björn
    Distribution of Fe isotopes in particles and colloids in the salinity gradient along the Lena River plume, Laptev Sea2019In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 16, no 6, p. 1305-1319Article in journal (Refereed)
    Abstract [en]

    Riverine Fe input is the primary Fe source for the ocean. This study is focused on the distribution of Fe along the Lena River freshwater plume in the Laptev Sea using samples from a 600 km long transect in front of the Lena River mouth. Separation of the particulate (> 0.22 mu m), colloidal (0.22 mu m-1 kDa), and truly dissolved (< 1 kDa) fractions of Fe was carried out. The total Fe concentrations ranged from 0.2 to 57 mu M with Fe dominantly as particulate Fe. The loss of > 99% of particulate Fe and about 90% of the colloidal Fe was observed across the shelf, while the truly dissolved phase was almost constant across the Laptev Sea. Thus, the truly dissolved Fe could be an important source of bioavailable Fe for plankton in the central Arctic Ocean, together with the colloidal Fe. Fe-isotope analysis showed that the particulate phase and the sediment below the Lena River freshwater plume had negative delta Fe-56 values (relative to IRMM-14). The colloidal Fe phase showed negative delta Fe-56 values close to the river mouth (about -0.20 parts per thousand) and positive delta Fe-56 values in the outermost stations (about +0.10 parts per thousand). We suggest that the shelf zone acts as a sink for Fe particles and colloids with negative delta Fe-56 values, representing chemically reactive ferrihydrites. The positive delta Fe-56 values of the colloidal phase within the outer Lena River freshwater plume might represent Fe oxyhydroxides, which remain in the water column, and will be the predominant delta Fe-56 composition in the Arctic Ocean.

  • 23. Deng, J.
    et al.
    Li, C.
    Frolking, S.
    Zhang, Y.
    Bäckstrand, Kristina
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Crill, Patrick
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 17, p. 4753-4770Article in journal (Refereed)
    Abstract [en]

    Northern peatlands in permafrost regions contain a large amount of organic carbon (C) in the soil. Climate warming and associated permafrost degradation are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is uncertain. We incorporated a permafrost model, Northern Ecosystem Soil Temperature (NEST), into a biogeochemical model, DeNitrification-DeComposition (DNDC), to model C dynamics in high-latitude peatland ecosystems. The enhanced model was applied to assess effects of permafrost thaw on C fluxes of a subarctic peatland at Stordalen, Sweden. DNDC simulated soil freeze-thaw dynamics, net ecosystem exchange of CO2 (NEE), and CH4 fluxes across three typical land cover types, which represent a gradient in the process of ongoing permafrost thaw at Stordalen. Model results were compared with multiyear field measurements, and the validation indicates that DNDC was able to simulate observed differences in seasonal soil thaw, NEE, and CH4 fluxes across the three land cover types. Consistent with the results from field studies, the modeled C fluxes across the permafrost thaw gradient demonstrate that permafrost thaw and the associated changes in soil hydrology and vegetation not only increase net uptake of C from the atmosphere but also increase the annual to decadal radiative forcing impacts on climate due to increased CH4 emissions. This study indicates the potential of utilizing biogeochemical models, such as DNDC, to predict the soil thermal regime in permafrost areas and to investigate impacts of permafrost thaw on ecosystem C fluxes after incorporating a permafrost component into the model framework.

  • 24.
    Deutsch, Barbara
    et al.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Alling, Vanja
    Norwegian Geotechnical Institute.
    Humborg, Christoph
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Korth, Frederike
    Leibniz Institute for Baltic Sea Research.
    Moerth, Magnus
    Stockholm University, Stockholm Resilience Centre, Baltic Nest Institute.
    Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem2012In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 9, p. 4465-4475Article in journal (Refereed)
    Abstract [en]

    To test the hypothesis whether high molecular weight dissolved organic matter (HMW-DOM) in a high latitude marginal sea is dominated by terrestrial derived matter, 10 stations were sampled along the salinity gradient of the central and northern Baltic Sea and were analyzed for concentrations of dissolved organic carbon as well as δ13C values of HMW-DOM. Different end-member-mixing models were applied to quantify the influence of terrestrial DOM and to test for conservative versus non-conservative behavior of the terrestrial DOM in the different Baltic Sea basins. The share of terrestrial DOM to the total HMW-DOM was calculated for each station, ranging from 43 to 83%. This shows the high influence of terrestrial DOM inputs for the Baltic Sea ecosystem. The data also suggest that terrestrial DOM reaching the open Baltic Sea is not subject to substantial removal anymore. However compared to riverine DOM concentrations, our results indicate that substantial amounts of HMW-DOM (> 50%) seem to be removed near the coastline during estuarine mixing. A budget approach yielded residence times for terrestrial DOM of 2.8, 3.0, and 4.5 yr for the Bothnian Bay, the Bothnian Sea and the Baltic Proper.

  • 25.
    Deutsch, Barbara
    et al.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Forster, S.
    Wilhelm, M.
    Dippner, J. W.
    Voss, M.
    Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics2010In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 7, no 10, p. 3259-3271Article in journal (Refereed)
    Abstract [en]

    Rates of denitrification in sediments were measured with the isotope pairing technique at different sites in the southern and central Baltic Sea. The rates varied between 0.5 mu mol N m(-2) h(-1) in sands and 28.7 mu mol N m(-2) h-1 in muddy sediments and showed a good correlation to the organic carbon contents of the surface sediments. N-removal rates via sedimentary denitrification were estimated for the entire Baltic Sea calculating sediment specific denitrification rates and interpolating them to the whole Baltic Sea area. Another approach was carried out by using the relationship between the organic carbon content and the rate of denitrification. The N-removal by denitrification in sediments varied between 426-652 kt Na-1, which is around 48-73% of the external N inputs delivered via rivers, coastal point sources, and atmospheric deposition. Moreover, an expansion of the anoxic bottom areas was considered under the assumption of a rising oxycline from 100 to 80 m water depth. This leads to an increase of the area with anoxic conditions and an overall decrease in sedimentary denitrification by 14%. Overall, we show here that this type of data extrapolation is a powerful tool to estimate the nitrogen losses for a whole coastal sea and may be applicable to other coastal regions and enclosed seas.

  • 26. Efrati, S.
    et al.
    Lehahn, Y.
    Rahav, E.
    Kress, N.
    Herut, B.
    Gertman, I.
    Goldman, R.
    Ozer, T.
    Lazar, M.
    Heifetz, Eyal
    Stockholm University, Faculty of Science, Department of Meteorology .
    Intrusion of coastal waters into the pelagic eastern Mediterranean: in situ and satellite-based characterization2013In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 10, no 5, p. 3349-3357Article in journal (Refereed)
    Abstract [en]

    A combined dataset of near-real-time multi-satellite observations and in situ measurements from a high-resolution survey is used for characterizing physical-biogeochemical properties of a patch stretching from the coast to the open sea in the Levantine Basin (LB) of the eastern Mediterranean (EM). Spatial analysis of the combined dataset indicates that the patch is a semi-enclosed system, bounded within the mixed layer and separated from ambient waters by transport barriers induced by horizontal stirring. As such, the patch is characterized by physical-biogeochemical properties that significantly differ from those of the waters surrounding it, with lower salinity and higher temperatures, concentrations of silicic acid and chlorophyll a, and abundance of Synechococcus and picoeukaryote cells. Based on estimates of patch dimensions (similar to 40 km width and similar to 25m depth) and propagation speed (similar to 0.09ms(-1)), the volume flux associated with the patch is found to be on the order of 0.1 Sv. Our observations suggest that horizontal stirring by surface currents is likely to have an important impact on the ultra-oligotrophic Levantine Basin ecosystem, through (1) transport of nutrients and coastally derived material, and (2) formation of local, dynamically isolated niches. In addition, this work provides a satellite-based framework for planning and executing high-resolution sampling strategies in the interface between the coast and the open sea.

  • 27.
    Ekström, Sanna
    et al.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Nozière, Barbara
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Hultberg, M.
    Alsberg, Tomas
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Magnér, J.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Nilsson, E. D.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Artaxo, P.
    A possible role of ground-based microorganisms on cloud formation in the atmosphere2010In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 7, no 1, p. 387-394Article in journal (Refereed)
    Abstract [en]

    The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but some aspects of it are not completely understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth’s surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and could significantly enhance their activation into cloud droplets. In the first part of this work, the cloud-nucleating efficiency of standard biosurfactants was characterized and found to be better than that of any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give organic compounds exceptional cloud-nucleating properties. In the second part, atmospheric aerosols were sampled at different locations: a temperate coastal site, a marine site, a temperate forest, and a tropical forest. Their surface tension was measured and found to be below 30 mN/m, the lowest reported for aerosols, to our knowledge. This very low surface tension was attributed to the presence of biosurfactants, the only natural substances able to reach to such low values. The presence of strong microbial surfactants in aerosols would be consistent with the organic fractions of exceptional cloud-nucleating efficiency recently found in aerosols, and with the correlations between algae bloom and cloud cover reported in the Southern Ocean. The results of this work also suggest that biosurfactants might be common in aerosols and thus of global relevance. If this is confirmed, a new role for microorganisms on the atmosphere and climate could be identified.

  • 28. Feng, X.
    et al.
    Gustafsson, Örjan
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Holmes, R. M.
    Vonk, J. E.
    van Dongen, B. E.
    Semiletov, I. P.
    Dudarev, O. V.
    Yunker, M. B.
    Macdonald, R. W.
    Montluon, D. B.
    Eglinton, T. I.
    Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolyzable components with plant wax lipids and lignin phenols2015In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 12, no 15, p. 4841-4860Article in journal (Refereed)
    Abstract [en]

    Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-alpha,omega-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas omega-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolyzable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in Arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land-ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in Arctic river sediments.

  • 29. Forkel, M.
    et al.
    Carvalhais, N.
    Schaphoff, S.
    von Bloh, W.
    Migliavacca, M.
    Thurner, Martin
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM). Max Planck Society, Germany.
    Thonicke, K.
    Identifying environmental controls on vegetation greenness phenology through model-data integration2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 23, p. 7025-7050Article in journal (Refereed)
    Abstract [en]

    Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the Arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and Arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed seasonal-to-decadal dynamics of vegetation greenness.

  • 30. Gentsch, N.
    et al.
    Mikutta, R.
    Alves, R. J. E.
    Barta, J.
    Capek, P.
    Gittel, A.
    Hugelius, Gustaf
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Kuhry, Peter
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Lashchinskiy, N.
    Palmtag, Juri
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Richter, A.
    Santruckova, H.
    Schnecker, J.
    Shibistova, O.
    Urich, T.
    Wild, B.
    Guggenberger, G.
    Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic2015In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 12, no 14, p. 4525-4542Article in journal (Refereed)
    Abstract [en]

    In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions, such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels were sampled in 5m wide soil trenches across the Siberian Arctic to calculate OC and total nitrogen (TN) stocks based on digital profile mapping. Density fractionation of soil samples was performed to distinguish between particulate OM (light fraction, LF, < 1.6 g cm(-3)), mineral associated OM (heavy fraction, HF, > 1.6 g cm(-3)), and a mobilizable dissolved pool (mobilizable fraction, MoF). Across all investigated soil profiles, the total OC storage was 20.2 +/- 8.0 kgm(-2) (mean +/- SD) to 100 cm soil depth. Fifty-four percent of this OC was located in the horizons of the active layer (annual summer thawing layer), showing evidence of cryoturbation, and another 35% was present in the upper permafrost. The HF-OC dominated the overall OC stocks (55 %), followed by LF-OC (19% in mineral and 13% in organic horizons). During fractionation, approximately 13% of the OC was released as MoF, which likely represents a readily bioavailable OM pool. Cryogenic activity in combination with cold and wet conditions was the principle mechanism through which large OC stocks were sequestered in the subsoil (16.4 +/- 8.1 kgm(-2); all mineral B, C, and permafrost horizons). Approximately 22% of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared to be the principle source of the dominant HF (63 %) in the subsoil. Despite the unfavourable abiotic conditions, low C/N ratios and high delta C-13 values indicated substantial microbial OM transformation in the subsoil, but this was not reflected in altered LF and HF pool sizes. Partial least-squares regression analyses suggest that OC accumulates in the HF fraction due to co-precipitation with multivalent cations (Al, Fe) and association with poorly crystalline iron oxides and clay minerals. Our data show that, across all permafrost pedons, the mineral-associated OM represents the dominant OM fraction, suggesting that the HF-OC is the OM pool in permafrost soils on which changing soil conditions will have the largest impact.

  • 31. Giesler, Reiner
    et al.
    Lyon, Steve W.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Mörth, Carl-Magnus
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Karlsson, Jan
    Karlsson, E. M.
    Jantze, Elin J.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Humborg, Christoph
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Catchment-scale dissolved carbon concentrations and exportestimates across six subarctic streams in northern Sweden2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, p. 525-537Article in journal (Refereed)
    Abstract [en]

    Climatic change is currently enhancing permafrostthawing and the flow of water through the landscape in subarcticand arctic catchments, with major consequences forthe carbon export to aquatic ecosystems. We studied streamwater carbon export in several tundra-dominated catchmentsin northern Sweden. There were clear seasonal differencesin both dissolved organic carbon (DOC) and dissolved inorganiccarbon (DIC) concentrations. The highest DOC concentrationsoccurred during the spring freshet while the highestDIC concentrations were always observed during winterbaseflow conditions for the six catchments considered in thisstudy. Long-term trends for the period 1982 to 2010 for oneof the streams showed that DIC concentrations has increasedby 9% during the 28 yr of measurement while no clear trendwas found for DOC. Similar increasing trends were alsofound for conductivity, Ca and Mg. When trends were discretizedinto individual months, we found a significant linearincrease in DIC concentrations with time for September,November and December. In these subarctic catchments, theannual mass of C exported as DIC was in the same orderof magnitude as DOC; the average proportion of DIC to thetotal dissolved C exported was 61% for the six streams. Furthermore,there was a direct relationship between total runoffand annual dissolved carbon fluxes for these six catchments.These relationships were more prevalent for annual DIC exportsthan annual DOC exports in this region. Our results alsohighlight that both DOC and DIC can be important in highlatitudeecosystems. This is particularly relevant in environmentswhere thawing permafrost and changes to subsurfaceice due to global warming can influence stream water fluxesof C. The large proportion of stream water DIC flux also hasimplications on regional C budgets and needs to be consideredin order to understand climate-induced feedback mechanismsacross the landscape.

  • 32.
    Grabs, T.
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Bishop, K.
    Laudon, H.
    Lyon, Steve W.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Seibert, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Riparian zone hydrology and soil water total organic carbon (TOC): implications for spatial variability and upscaling of lateral riparian TOC exports2012In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 9, no 10, p. 3901-3916Article in journal (Refereed)
    Abstract [en]

    Groundwater flowing from hillslopes through riparian (near-stream) soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC) concentration profiles and groundwater levels measured in the riparian zone (RZ) of a 67 km(2) catchment in Sweden. TOC exported laterally from 13 riparian soil profiles was then estimated based on the riparian flow-concentration integration model (RIM). Much of the observed spatial variability of riparian TOC concentrations in this system could be predicted from groundwater levels and the topographic wetness index (TWI). Organic riparian peat soils in forested areas emerged as hotspots exporting large amounts of TOC. These TOC fluxes were subject to considerable temporal variations caused by a combination of variable flow conditions and changing soil water TOC concentrations. Mineral riparian gley soils, on the other hand, were related to rather small TOC export rates and were characterized by relatively time-invariant TOC concentration profiles. Organic and mineral soils in RZs constitute a heterogeneous landscape mosaic that potentially controls much of the spatial variability of stream water TOC. We developed an empirical regression model based on the TWI to move beyond the plot scale and to predict spatially variable riparian TOC concentration profiles for RZs underlain by glacial till.

  • 33.
    Gustafsson, Erik
    et al.
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre, Baltic Nest Institute.
    Hagens, Mathilde
    Sun, Xiaole
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
    Reed, Daniel C.
    Humborg, Christoph
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. University of Helsinki, Finland.
    Slomp, Caroline P.
    Gustafsson, Bo G.
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre, Baltic Nest Institute. University of Helsinki, Finland.
    Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea2019In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 16, no 2, p. 437-456Article in journal (Refereed)
    Abstract [en]

    Enhanced release of alkalinity from the seafloor, principally driven by anaerobic degradation of organic matter under low-oxygen conditions and associated secondary redox reactions, can increase the carbon dioxide (CO2) buffering capacity of seawater and therefore oceanic CO2 uptake. The Baltic Sea has undergone severe changes in oxygenation state and total alkalinity (TA) over the past decades. The link between these concurrent changes has not yet been investigated in detail. A recent system-wide TA budget constructed for the past 50 years using BALTSEM, a coupled physical-biogeochemical model for the whole Baltic Sea area, revealed an unknown TA source. Here we use BALTSEM in combination with observational data and one-dimensional reactive transport modelling of sedimentary processes in the Fårö Deep, a deep Baltic Sea basin, to test whether sulfate reduction coupled to iron (Fe) sulfide burial can explain the missing TA source in the Baltic Proper. We calculated that this burial can account for 26% of the missing source in this basin, with the remaining TA possibly originating from unknown river inputs or submarine groundwater discharge. We also show that temporal variability in the input of Fe to the sediments since the 1970s drives changes in sulfur burial in the Fårö Deep, suggesting that Fe availability is the ultimate limiting factor for TA generation under anoxic conditions. The implementation of projected climate change and two nutrient load scenarios for the 21st century in BALTSEM shows that reducing nutrient loads will improve deep water oxygen conditions, but at the expense of lower surface water TA concentrations, CO2 buffering capacities and faster acidification. When these changes additionally lead to a decrease in Fe inputs to the sediment of the deep basins, anaerobic TA generation will be reduced even further, thus exacerbating acidification. This work highlights that Fe dynamics play a key role in the release of TA from sediments where Fe sulfide formation is limited by Fe availability, as exemplified for the Baltic Sea. Moreover, it demonstrates that burial of Fe sulfides should be included in TA budgets of low oxygen basins.

  • 34.
    Gustafsson, Erik
    et al.
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre, Baltic Nest Institute.
    Humborg, Christoph
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Björk, Göran
    Stranne, Christian
    Stockholm University, Faculty of Science, Department of Geological Sciences. University of New Hampshire, USA.
    Andersson, Leif G.
    Geibel, Marc C.
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Mörth, Carl-Magnus
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Sundbom, Marcus
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Semiletov, Igor P.
    Thornton, Brett F.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Gustafsson, Bo G.
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre, Baltic Nest Institute.
    Carbon cycling on the East Siberian Arctic Shelf – a change in air-sea CO2 flux induced by mineralization of terrestrial organic carbon2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189Article in journal (Refereed)
    Abstract [en]

    Measurements from the SWERUS-C3 and ISSS-08 Arctic expeditions were used to calibrate and validate a new physical-biogeochemical model developed to quantify key carbon cycling processes on the East Siberian Arctic Shelf (ESAS). The model was used in a series of experimental simulations with the specific aim to investigate the pathways of terrestrial dissolved and particulate organic carbon (DOCter and POCter) supplied to the shelf. Rivers supply on average 8.5 Tg C yr−1 dissolved inorganic carbon (DIC), and further 8.5 and 1.1 Tg C yr−1 DOCter and POCter respectively. Based on observed and simulated DOC concentrations and stable isotope values (δ13CDOC) in shelf waters, we estimate that only some 20 % of the riverine DOCter is labile. According to our model results, an additional supply of approximately 14 Tg C yr−1 eroded labile POCter is however required to describe the observed stable isotope values of DIC (δ13CDIC). Degradation of riverine DOCter and POCter results in a 1.8 Tg C yr−1 reduction in the uptake of atmospheric CO2, while degradation of eroded POCter results in an additional 10 Tg C yr−1 reduction. Our calculations indicate nevertheless that the ESAS is an overall small net sink for atmospheric CO2 (1.7 Tg C yr−1). The external carbon sources are largely compensated by a net export from the shelf to the Arctic Ocean (31 Tg C yr−1), and to a smaller degree by a permanent burial in the sediments (2.7 Tg C yr−1).

  • 35.
    Gustafsson, Örjan
    et al.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    van Dongen, B. E.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Vonk, J. E.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Dudarev, O. V.
    Semiletov, I. P.
    Widespread release of old carbon across the Siberian Arctic echoed by its large rivers2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, no 6, p. 1737-1743Article in journal (Refereed)
    Abstract [en]

    Over decadal-centennial timescales, only a few mechanisms in the carbon-climate system could cause a massive net redistribution of carbon from land and ocean systems to the atmosphere in response to climate warming. The largest such climate-vulnerable carbon pool is the old organic carbon (OC) stored in Arctic permafrost (perennially frozen) soils. Climate warming, both predicted and now observed to be the strongest globally in the Eurasian Arctic and Alaska, causes thaw-release of old permafrost carbon from local tundra sites. However, a central challenge for the assessment of the general vulnerability of this old OC pool is to deduce any signal integrating its release over larger scales. Here we examine radiocarbon measurements of molecular soil markers exported by the five Great Russian-Arctic Rivers (Ob, Yenisey, Lena, Indigirka and Kolyma), employed as natural integrators of carbon release processes in their watersheds. The signals held in estuarine surface sediments revealed that average radiocarbon ages of n-alkanes increased east-to-west from 6400 yr BP in Kolyma to 11 400 yr BP in Ob. This is consistent with westwards trends of both warmer climate and more degraded organic matter as indicated by the ratio of high molecular weight (HMW) n-alkanoic acids to HMW n-alkanes. The dynamics of Siberian permafrost can thus be probed via the molecular-radiocarbon signal as carried by Arctic rivers. Old permafrost carbon is at present vulnerable to mobilization over continental scales. Climate-induced changes in the radiocarbon fingerprint of released permafrost carbon will likely depend on changes in both permafrost coverage and Arctic soil hydraulics.

  • 36. Gålfalk, Magnus
    et al.
    Karlson, Martin
    Crill, Patrick
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Bousquet, Philippe
    Bastviken, David
    Technical note: A simple approach for efficient collection of field reference data for calibrating remote sensing mapping of northern wetlands2018In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 15, no 5, p. 1549-1557Article in journal (Refereed)
    Abstract [en]

    The calibration and validation of remote sensing land cover products are highly dependent on accurate field reference data, which are costly and practically challenging to collect. We describe an optical method for collection of field reference data that is a fast, cost-efficient, and robust alternative to field surveys and UAV imaging. A lightweight, waterproof, remote-controlled RGB camera (GoPro HERO4 Silver, GoPro Inc.) was used to take wide-angle images from 3.1 to 4.5 m in altitude using an extendable monopod, as well as representative near-ground (< 1 m) images to identify spectral and structural features that correspond to various land covers in present lighting conditions. A semi-automatic classification was made based on six surface types (graminoids, water, shrubs, dry moss, wet moss, and rock). The method enables collection of detailed field reference data, which is critical in many remote sensing applications, such as satellite-based wetland mapping. The method uses common non-expensive equipment, does not require special skills or training, and is facilitated by a step-by-step manual that is included in the Supplement. Over time a global ground cover database can be built that can be used as reference data for studies of non-forested wetlands from satellites such as Sentinel 1 and 2 (10 m pixel size).

  • 37.
    Hugelius, Gustaf
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kuhry, Peter
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Tarnocai, Charles
    Ideas and perspectives: Holocene thermokarst sediments of the Yedoma permafrost region do not increase the northern peatland carbon pool2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 7, p. 2003-2010Article in journal (Refereed)
    Abstract [en]

    Permafrost deposits in the Beringian Yedoma region store large amounts of organic carbon (OC). Walter Anthony et al. (2014) describe a previously unrecognized pool of 159 Pg OC accumulated in Holocene thermokarst sediments deposited in Yedoma region alases (thermokarst depressions). They claim that these alas sediments increase the previously recognized circumpolar permafrost peat OC pool by 50 %. It is stated that previous integrated studies of the permafrost OC pool have failed to account for these deposits because the Northern Circumpolar Soil Carbon Database (NCSCD) is biased towards non-alas field sites and that the soil maps used in the NCSCD underestimate coverage of organic permafrost soils. Here we evaluate these statements against a brief literature review, existing data sets on Yedoma region soil OC storage and independent field-based and geospatial data sets of peat soil distribution in the Siberian Yedoma region. Our findings are summarized in three main points. Firstly, the sediments described by Walter Anthony et al. (2014) are primarily mineral lake sediments and do not match widely used international scientific definitions of peat or organic soils. They can therefore not be considered an addition to the circumpolar peat carbon pool. We also emphasize that a clear distinction between mineral and organic soil types is important since they show very different vulnerability trajectories under climate change. Secondly, independent field data and geospatial analyses show that the Siberian Yedoma region is dominated by mineral soils, not peatlands. Thus, there is no evidence to suggest any systematic bias in the NCSCD field data or maps. Thirdly, there is spatial overlap between these Holocene thermokarst sediments and previous estimates of permafrost soil and sediment OC stocks. These carbon stocks were already accounted for by previous studies and they do not significantly increase the known circumpolar OC pool. We suggest that these inaccurate statements made in Walter Anthony et al. (2014) mainly resulted from misunderstandings caused by conflicting definitions and terminologies across different geoscientific disciplines. A careful cross-disciplinary review of terminologies would help future studies to appropriately harmonize definitions between different fields.

  • 38.
    Hugelius, Gustaf
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Strauss, J.
    Zubrzycki, S.
    Harden, J. W.
    Schuur, E. A. G.
    Ping, C. -L
    Schirrmeister, L.
    Grosse, G.
    Michaelson, G. J.
    Koven, C. D.
    O'Donnell, J. A.
    Elberling, B.
    Mishra, U.
    Camill, P.
    Yu, Z.
    Palmtag, Juri
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Kuhry, Peter
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 23, p. 6573-6593Article in journal (Refereed)
    Abstract [en]

    Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but SOC stock estimates were poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of permafrost SOC stocks, including quantitative uncertainty estimates, in the 0-3m depth range in soils as well as for sediments deeper than 3m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. Revised estimates are based on significantly larger databases compared to previous studies. Despite this there is evidence of significant remaining regional data gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for deposits below 3mdepth in deltas and the Yedoma region. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are substantial differences in other components, including the fraction of perennially frozen SOC. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 +/- 12 and 472 +/- 27 Pg for the 0-0.3 and 0-1 m soil depths, respectively (+/- 95% confidence intervals). Storage of SOC in 0-3m of soils is estimated to 1035 +/- 150 Pg. Of this, 34 +/- 16 PgC is stored in poorly developed soils of the High Arctic. Based on generalized calculations, storage of SOC below 3m of surface soils in deltaic alluvium of major Arctic rivers is estimated as 91 +/- 52 Pg. In the Yedoma region, estimated SOC stocks below 3mdepth are 181 +/- 54 Pg, of which 74 +/- 20 Pg is stored in intact Yedoma (late Pleistocene ice-and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits. Total estimated SOC storage for the permafrost region is similar to 1300 Pg with an uncertainty range of similar to 1100 to 1500 Pg. Of this, similar to 500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while similar to 800 Pg is perennially frozen. This represents a substantial similar to 300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.

  • 39. Hunt, Brian P. V.
    et al.
    Bonnet, Sophie
    Berthelot, Hugo
    Conroy, Brandon J.
    Foster, Rachel A.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Pagano, Marc
    Contribution and pathways of diazotroph-derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 10, p. 3131-3145Article in journal (Refereed)
    Abstract [en]

    In oligotrophic tropical and subtropical oceans, where strong stratification can limit the replenishment of surface nitrate, dinitrogen (N-2) fixation by diazotrophs can represent a significant source of nitrogen (N) for primary production. The VAHINE (VAriability of vertical and tropHIc transfer of fixed N-2 in the south-wEst Pacific) experiment was designed to examine the fate of diazotroph-derived nitrogen (DDN) in such ecosystems. In austral summer 2013, three large ( similar to aEuro parts per thousand aEuro-50aEuro-m(3)) in situ mesocosms were deployed for 23 days in the New Caledonia lagoon, an ecosystem that typifies the low-nutrient, low-chlorophyll environment, to stimulate diazotroph production. The zooplankton component of the study aimed to measure the incorporation of DDN into zooplankton biomass, and assess the role of direct diazotroph grazing by zooplankton as a DDN uptake pathway. Inside the mesocosms, the diatom-diazotroph association (DDA) het-1 predominated during days 5-15 while the unicellular diazotrophic cyanobacteria UCYN-C predominated during days 15-23. A Trichodesmium bloom was observed in the lagoon (outside the mesocosms) towards the end of the experiment. The zooplankton community was dominated by copepods (63aEuro-% of total abundance) for the duration of the experiment. Using two-source N isotope mixing models we estimated a mean similar to aEuro parts per thousand aEuro-28aEuro-% contribution of DDN to zooplankton nitrogen biomass at the start of the experiment, indicating that the natural summer peak of N-2 fixation in the lagoon was already contributing significantly to the zooplankton. Stimulation of N-2 fixation in the mesocosms corresponded with a generally low-level enhancement of DDN contribution to zooplankton nitrogen biomass, but with a peak of similar to aEuro parts per thousand aEuro-73aEuro-% in mesocosm 1 following the UCYN-C bloom. qPCR analysis targeting four of the common diazotroph groups present in the mesocosms (Trichodesmium, het-1, het-2, UCYN-C) demonstrated that all four were ingested by copepod grazers, and that their abundance in copepod stomachs generally corresponded with their in situ abundance. N-15(2) labelled grazing experiments therefore provided evidence for direct ingestion and assimilation of UCYN-C-derived N by the zooplankton, but not for het-1 and Trichodesmium, supporting an important role of secondary pathways of DDN to the zooplankton for the latter groups, i.e. DDN contributions to the dissolved N pool and uptake by nondiazotrophs. This study appears to provide the first evidence of direct UCYN-C grazing by zooplankton, and indicates that UCYN-C-derived N contributes significantly to the zooplankton food web in the New Caledonia lagoon through a combination of direct grazing and secondary pathways.

  • 40. Jammet, Mathilde
    et al.
    Dengel, Sigrid
    Kettner, Ernesto
    Parmentier, Frans-Jan W.
    Wik, Martin
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Crill, Patrick
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Friborg, Thomas
    Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 22, p. 5189-5216Article in journal (Refereed)
    Abstract [en]

    Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80% of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33% of annual carbon exchange. Our study shows (1) the importance of overturn periods (spring or fall) for the annual CH4 and CO2 emissions of northern lakes, (2) the significance of lakes as atmospheric carbon sources in subarctic landscapes while fens can be a strong carbon sink, and (3) the potential for ecosystem-scale eddy covariance measurements to improve the understanding of short-term processes driving lake-atmosphere exchange of CH4 and CO2.

  • 41.
    Jansen, Joachim
    et al.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Thornton, Brett F.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Cortés, Alicia
    Snöälv, Jo
    Wik, Martin
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    MacIntyre, Sally
    Crill, Patrick M.
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Drivers of diffusive lake CH4 emissions on daily to multi-year time scalesIn: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189Article in journal (Other academic)
    Abstract [en]

    Lakes and reservoirs are important emitters of climate forcing trace gases. Various environmental drivers of the flux, such as temperature and wind speed, have been identified, but their relative importance remains poorly understood. Here we use an extensive field dataset to disentangle physical and biogeochemical controls on the turbulence-driven diffusive flux of methane (CH4) on daily to multi-year timescales. We compare 8 years of floating chamber fluxes from three small, shallow subarctic lakes (2010–2017, n = 1306) with fluxes computed using 9 years of surface water concentration measurements (2009–2017, n = 606) and a small-eddy surface renewal model informed by in situ meteorological observations. Chamber fluxes averaged 6.9 ± 0.3 mg m−2 d−1 and gas transfer velocities (k600) from the chamber-calibrated surface renewal model averaged 4.0 ± 0.1 cm h−1. We find robust (R2 ≥ 0.93, p < 0.01) Arrhenius-type temperature functions of the CH4 flux (Ea' = 0.90 ± 0.14 eV) and of the surface CH4 concentration (Ea' = 0.88 ± 0.09 eV). Chamber derived gas transfer velocities tracked the power-law wind speed relation of the model (k ∝ u3/4). While the flux increased with wind speed, during storm events (U10 ≥ 6.5 m s−1) emissions were reduced by rapid water column degassing. Spectral analysis revealed that on timescales shorter than a month emissions were driven by wind shear, but on longer timescales variations in water temperature governed the flux, suggesting emissions were strongly coupled to production. Our findings suggest that accurate short- and long term projections of lake CH4 emissions can be based on distinct weather- and climate controlled drivers of the flux.

  • 42.
    Jilbert, T.
    et al.
    Department of Earth Sciences (Geochemistry), Faculty of Geosciences, Utrecht University.
    Slomp, C. P.
    Department of Earth Sciences (Geochemistry), Faculty of Geosciences, Utrecht University.
    Gustafsson, Bo G.
    Stockholm University, Stockholm Resilience Centre, Baltic Nest Institute.
    Boer, W.
    Royal Netherlands Institute for Sea Research.
    Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, p. 1699-1720Article in journal (Refereed)
    Abstract [en]

    Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C) and nitrogen (N) during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be redox-dependent, increasing as reducing conditions become more severe at greater water-depth in the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline.

  • 43.
    Kahru, Mati
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. University of California San Diego, USA.
    Elmgren, Ragnar
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 13, p. 3619-3633Article in journal (Refereed)
    Abstract [en]

    Cyanobacteria, primarily of the species Nodularia spumigena, form extensive surface accumulations in the Baltic Sea in July and August, ranging from diffuse flakes to dense surface scums. The area of these accumulations can reach similar to 200 000 km(2). We describe the compilation of a 35-year-long time series (1979-2013) of cyanobacteria surface accumulations in the Baltic Sea using multiple satellite sensors. This appears to be one of the longest satellite-based time series in biological oceanography. The satellite algorithm is based on remote sensing reflectance of the water in the red band, a measure of turbidity. Validation of the satellite algorithm using horizontal transects from a ship of opportunity showed the strongest relationship with phycocyanin fluorescence (an indicator of cyanobacteria), followed by turbidity and then by chlorophyll a fluorescence. The areal fraction with cyanobacteria accumulations (FCA) and the total accumulated area affected (TA) were used to characterize the intensity and extent of the accumulations. The fraction with cyanobacteria accumulations was calculated as the ratio of the number of detected accumulations to the number of cloud-free sea-surface views per pixel during the season (July-August). The total accumulated area affected was calculated by adding the area of pixels where accumulations were detected at least once during the season. The fraction with cyanobacteria accumulations and TA were correlated (R-2 = 0.55) and both showed large interannual and decadal-scale variations. The average FCA was significantly higher for the second half of the time series (13.8 %, 1997-2013) than for the first half (8.6 %, 1979-1996). However, that does not seem to represent a long-term trend but decadal-scale oscillations. Cyanobacteria accumulations were common in the 1970s and early 1980s (FCA between 11-17 %), but rare (FCA below 4 %) during 1985-1990; they increased again starting in 1991 and particularly in 1999, reaching maxima in FCA (similar to 25 %) and TA (similar to 210 000 km(2)) in 2005 and 2008. After 2008, FCA declined to more moderate levels (6-17 %). The timing of the accumulations has become earlier in the season, at a mean rate of 0.6 days per year, resulting in approximately 20 days advancement during the study period. The interannual variations in FCA are positively correlated with the concentration of chlorophyll a during July-August sampled at the depth of similar to 5 m by a ship of opportunity, but interannual variations in FCA are more pronounced as the coefficient of variation is over 5 times higher.

  • 44. Kahru, Mati
    et al.
    Elmgren, Ragnar
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Savchuk, Oleg P.
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre, Baltic Nest Institute.
    Changing seasonality of the Baltic Sea2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 4, p. 1009-1018Article in journal (Refereed)
    Abstract [en]

    Changes in the phenology of physical and ecological variables associated with climate change are likely to have significant effect on many aspects of the Baltic ecosystem. We apply a set of phenological indicators to multiple environmental variables measured by satellite sensors for 17-36 years to detect possible changes in the seasonality in the Baltic Sea environment. We detect significant temporal changes, such as earlier start of the summer season and prolongation of the productive season, in several variables ranging from basic physical drivers to ecological status indicators. While increasing trends in the absolute values of variables like sea-surface temperature (SST), diffuse attenuation of light (Ked490) and satellite-detected chlorophyll concentration (CHL) are detectable, the corresponding changes in their seasonal cycles are more dramatic. For example, the cumulative sum of 30 000 W m(-2) of surface incoming short-wave irradiance (SIS) was reached 23 days earlier in 2014 compared to the beginning of the time series in 1983. The period of the year with SST of at least 17 degrees C has almost doubled (from 29 days in 1982 to 56 days in 2014), and the period with Ked490 over 0.4 m(1) has increased from about 60 days in 1998 to 240 days in 2013 -i.e., quadrupled. The period with satellite-estimated CHL of at least 3 mg m(-3) has doubled from approximately 110 days in 1998 to 220 days in 2013. While the timing of both the phytoplankton spring and summer blooms have advanced, the annual CHL maximum that in the 1980s corresponded to the spring diatom bloom in May has now shifted to the summer cyanobacteria bloom in July.

  • 45.
    Karlsson, Emma
    et al.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Charkin, A.
    Dudarev, O.
    Semiletov, I.
    Vonk, J. E.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Sanchez-Garcia, L.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Andersson, August
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Gustafsson, Örjan
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea2011In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 8, no 7, p. 1865-1879Article in journal (Refereed)
    Abstract [en]

    The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC) from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating a positive feedback mechanism to climate warming. This study focuses on the Buor-Khaya Bay (SE Laptev Sea), an area with strong terr-OC input from both coastal erosion and the Lena river. To better understand the fate of this terr-OC, molecular (acyl lipid biomarkers) and isotopic tools (stable carbon and radiocarbon isotopes) have been applied to both particulate organic carbon (POC) in surface water and sedimentary organic carbon (SOC) collected from the underlying surface sediments. Clear gradients in both extent of degradation and differences in source contributions were observed both between surface water POC and surface sediment SOC as well as over the 100 s km investigation scale (about 20 stations). Depleted delta(13)C-OC and high HMW/LMW n-alkane ratios signaled that terr-OC was dominating over marine/planktonic sources. Despite a shallow water column (10-40 m), the isotopic shift between SOC and POC varied systematically from +2 to +5 per mil for delta(13)C and from +300 to +450 for Delta(14)C from the Lena prodelta to the Buor-Khaya Cape. At the same time, the ratio of HMW n-alkanoic acids to HMW n-alkanes as well as HMW n-alkane CPI, both indicative of degradation, were 5-6 times greater in SOC than in POC. This suggests that terr-OC was substantially older yet less degraded in the surface sediment than in the surface waters. This unusual vertical degradation trend was only recently found also for the central East Siberian Sea. Numerical modeling (Monte Carlo simulations) with delta(13)C and Delta(14)C in both POC and SOC was applied to deduce the relative contribution of - plankton OC, surface soil layer OC and yedoma/mineral soil OC. This three end-member dual-carbon-isotopic mixing model suggests quite different scenarios for the POC vs SOC. Surface soil is dominating (63 +/- 10 %) the suspended organic matter in the surface water of SE Laptev Sea. In contrast, the yedoma/mineral soil OC is accounting for 60 +/- 9% of the SOC. We hypothesize that yedoma-OC, associated with mineral-rich matter from coastal erosion is ballasted and thus quickly settles to the bottom. The mineral association may also explain the greater resistance to degradation of this terr-OC component. In contrast, more amorphous humic-like and low-density terr-OC from surface soil and recent vegetation represents a younger but more bioavailable and thus degraded terr-OC component held buoyant in surface water. Hence, these two terr-OC components may represent different propensities to contribute to a positive feedback to climate warming by converting OC from coastal and inland permafrost into CO(2).

  • 46.
    Keys, Patrick W.
    et al.
    Stockholm University, Stockholm Resilience Centre.
    van der Ent, R. J.
    Gordon, Line J.
    Stockholm University, Stockholm Resilience Centre.
    Hoff, Holger
    Stockholm University, Stockholm Resilience Centre, Stockholm Environment Institute. Potsdam Institute for Climate Impact Research, Germany.
    Nikoli, R.
    Savenije, H. H. G.
    Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions2012In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 9, no 2, p. 733-746Article in journal (Refereed)
    Abstract [en]

    It is well known that rivers connect upstream and downstream ecosystems within watersheds. Here we describe the concept of precipitationsheds to show how upwind terrestrial evaporation source areas contribute moisture for precipitation to downwind sink regions. We illustrate the importance of upwind land cover in precipitationsheds to sustain precipitation in critically water stressed downwind areas, specifically dryland agricultural areas. We first identify seven regions where rainfed agriculture is particularly vulnerable to reductions in precipitation, and then map their precipitationsheds. We then develop a framework for qualitatively assessing the vulnerability of precipitation for these seven agricultural regions. We illustrate that the sink regions have varying degrees of vulnerability to changes in upwind evaporation rates depending on the extent of the precipitationshed, source region land use intensity and expected land cover changes in the source region.

  • 47. Korth, F.
    et al.
    Deutsch, Barbara
    Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
    Frey, C.
    Moros, C.
    Voss, M.
    Nitrate source identification in the Baltic Sea using its isotopic ratios in combination with a Bayesian isotope mixing model2014In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 11, no 17, p. 4913-4924Article in journal (Refereed)
    Abstract [en]

    Nitrate (NO3-) is the major nutrient responsible for coastal eutrophication worldwide and its production is related to intensive food production and fossil-fuel combustion. In the Baltic Sea NO3- inputs have increased 4-fold over recent decades and now remain constantly high. NO3- source identification is therefore an important consideration in environmental management strategies. In this study focusing on the Baltic Sea, we used a method to estimate the proportional contributions of NO3- from atmospheric deposition, N-2 fixation, and runoff from pristine soils as well as from agricultural land. Our approach combines data on the dual isotopes of NO3- (delta N-15-NO3- and delta O-18-NO3-) in winter surface waters with a Bayesian isotope mixing model (Stable Isotope Analysis in R, SIAR). Based on data gathered from 47 sampling locations over the entire Baltic Sea, the majority of the NO3- in the southern Baltic was shown to derive from runoff from agricultural land (33-100 %), whereas in the northern Baltic, i.e. the Gulf of Bothnia, NO3- originates from nitrification in pristine soils (34-100 %). Atmospheric deposition accounts for only a small percentage of NO3- levels in the Baltic Sea, except for contributions from northern rivers, where the levels of atmospheric NO3- are higher. An additional important source in the central Baltic Sea is N-2 fixation by diazotrophs, which contributes 49-65% of the overall NO3- pool at this site. The results obtained with this method are in good agreement with source estimates based upon delta N-15 values in sediments and a three-dimensional ecosystem model, ERGOM. We suggest that this approach can be easily modified to determine NO3- sources in other marginal seas or larger near-coastal areas where NO3- is abundant in winter surface waters when fractionation processes are minor.

  • 48. Li, Wei
    et al.
    Ciais, Philippe
    Peng, Shushi
    Yue, Chao
    Wang, Yilong
    Thurner, Martin
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Saatchi, Sassan S.
    Arneth, Almut
    Avitabile, Valerio
    Carvalhais, Nuno
    Harper, Anna B.
    Kato, Etsushi
    Koven, Charles
    Liu, Yi Y.
    Nabel, Julia E. M. S.
    Pan, Yude
    Pongratz, Julia
    Poulter, Benjamin
    Pugh, Thomas A. M.
    Santoro, Maurizio
    Sitch, Stephen
    Stocker, Benjamin D.
    Viovy, Nicolas
    Wiltshire, Andy
    Yousefpour, Rasoul
    Zaehle, Soenke
    Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 22, p. 5053-5067Article in journal (Refereed)
    Abstract [en]

    The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite-and inventory-based biomass observations to constrain historical cumulative LULCC emissions (E-LUC(c)) from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and E-LUC(c). This method is applicable on the global and regional scale. The original DGVM estimates of E-LUC(c) range from 94 to 273 PgC during 1901-2012. After constraining by current biomass observations, we derive a best estimate of 155 +/- 50 PgC (1 sigma Gaussian error). The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained Ec LUC is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.

  • 49. Lidman, F.
    et al.
    Mörth, Carl-Magnus
    Stockholm University, Faculty of Science, Department of Geological Sciences.
    Laudon, H.
    Landscape control of uranium and thorium in boreal streams - spatiotemporal variability and the role of wetlands2012In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 9, no 11, p. 4773-4785Article in journal (Refereed)
    Abstract [en]

    The concentrations of uranium and thorium in ten partly nested streams in the boreal forest region were monitored over a two-year period. The investigated catchments ranged from small headwaters (0.1 km(2)) up to a fourth-order stream (67 km(2)). Considerable spatiotemporal variations were observed, with little or no correlation between streams. The fluxes of both uranium and thorium varied substantially between the subcatchments, ranging from 1.7 to 30 g km(-2) a(-1) for uranium and from 3.2 to 24 g km(-2) a(-1) for thorium. Airborne gamma spectrometry was used to measure the concentrations of uranium and thorium in surface soils throughout the catchment, suggesting that the concentrations of uranium and thorium in mineral soils are similar throughout the catchment. The fluxes of uranium and thorium were compared to a wide range of parameters characterising the investigated catchments and the chemistry of the stream water, e. g. soil concentrations of these elements, pH, TOC (total organic carbon), Al, Si and hydrogen carbonate, but it was concluded that the spatial variabilities in the fluxes of both uranium and thorium mainly were controlled by wetlands. The results indicate that there is a predictable and systematic accumulation of both uranium and thorium in boreal wetlands that is large enough to control the transport of these elements. On the landscape scale approximately 65-80% of uranium and 55-65% of thorium entering a wetland were estimated to be retained in the peat. Overall, accumulation in mires and other types of wetlands was estimated to decrease the fluxes of uranium and thorium from the boreal forest landscape by 30-40%, indicating that wetlands play an important role for the biogeochemical cycling of uranium and thorium in the boreal forest landscape. The atmospheric deposition of uranium and thorium was also quantified, and its contribution to boreal streams was found to be low compared to weathering.

  • 50. Mahecha, Miguel D.
    et al.
    Gans, Fabian
    Sippel, Sebastian
    Donges, Jonathan F.
    Stockholm University, Faculty of Science, Stockholm Resilience Centre. Potsdam Institute for Climate Impact Research, Germany.
    Kaminski, Thomas
    Metzger, Stefan
    Migliavacca, Mirco
    Papale, Dario
    Rammig, Anja
    Zscheischler, Jakob
    Detecting impacts of extreme events with ecological in situ monitoring networks2017In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 18, p. 4255-4277Article in journal (Refereed)
    Abstract [en]

    Extreme hydrometeorological conditions typically impact ecophysiological processes on land. Satellite-based observations of the terrestrial biosphere provide an important reference for detecting and describing the spatiotemporal development of such events. However, in-depth investigations of ecological processes during extreme events require additional in situ observations. The question is whether the density of existing ecological in situ networks is sufficient for analysing the impact of extreme events, and what are expected event detection rates of ecological in situ networks of a given size. To assess these issues, we build a baseline of extreme reductions in the fraction of absorbed photosynthetically active radiation (FAPAR), identified by a new event detection method tailored to identify extremes of regional relevance. We then investigate the event detection success rates of hypothetical networks of varying sizes. Our results show that large extremes can be reliably detected with relatively small networks, but also reveal a linear decay of detection probabilities towards smaller extreme events in log-log space. For instance, networks with approximate to 100 randomly placed sites in Europe yield a >= 90% chance of detecting the eight largest (typically very large) extreme events; but only a >= 50% chance of capturing the 39 largest events. These findings are consistent with probability-theoretic considerations, but the slopes of the decay rates deviate due to temporal autocorrelation and the exact implementation of the extreme event detection algorithm. Using the examples of AmeriFlux and NEON, we then investigate to what degree ecological in situ networks can capture extreme events of a given size. Consistent with our theoretical considerations, we find that today's systematically designed networks (i.e. NEON) reliably detect the largest extremes, but that the extreme event detection rates are not higher than would be achieved by randomly designed networks. Spatio-temporal expansions of ecological in situ monitoring networks should carefully consider the size distribution characteristics of extreme events if the aim is also to monitor the impacts of such events in the terrestrial biosphere.

12 1 - 50 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf